New camera on Subaru Telescope may directly observe exoplanets

Jan. 3, 2008
January 3, 2008, Hilo, HI--The new HiCIAO camera on the Subaru Telescope on Mauna Kea has seen first light.

January 3, 2008, Hilo, HI--The Subaru Telescope, located on the summit of Mauna Kea, is dedicated to exploring the cosmos, gaining a deeper and more thorough understanding of everything that surrounds us. With an 8.2-meter mirror and a suite of sophisticated instruments, astronomers at the Subaru Telescope explore nearby stars looking for planetary systems. A giant step towards this goal was made recently with the "first-light" inauguration of a new state-of-the-art camera.

Subaru uses eight innovative cameras and spectrographs optimized for various astronomical investigations in optical and near-infrared wavelengths. On the night of December 3, 2007, the High Contrast Instrument for Adaptive Optics (HiCIAO) camera was brought to life. The HiCIAO is a technologically adaptable system that will replace the infrared Coronagraphic Imager with Adaptive Optics (CIAO) unit in operation since April 2000. Both systems are designed to block out the harsh direct light from a star, so that nearby faint objects such as planets can be viewed. The new system benefits from a contrast improvement of ten to 100 times, allowing astronomers glimpses into regions never explored.

A further advantage of the HiCIAO camera is that it will be used in concert with an adaptive optics (AO) system that was recently significantly upgraded, which, in turn, increased the clarity of Subaru's vision by a factor of ten, opening up more of the night sky to observing. The new AO system uses 188 actuators behind a deformable mirror to remove atmospheric distortion, allowing the Subaru Telescope to observe close to its theoretical performance limits. In addition, a laser guide-star system was installed to enable observations of tiny regions of sky without bright stars to steady the AO system on.

The HiCIAO system, initiated in 2004, was developed by a team of scientists and engineers from the Subaru Telescope, National Astronomical Observatory of Japan, and the University of Hawaii's Institute for Astronomy. Dr. Ryuji Suzuki, a Subaru astronomer leading the HiCIAO project, says "the unique instrument was primarily designed for the direct detection of extrasolar planets and disks." The system's design allows for high-contrast coronagraphic techniques in three observing modes: direct imaging, polarization differential imaging, and spectral differential imaging. HiCIAO directly detects and characterizes young extrasolar planets and brown dwarfs, sub-stellar objects that occupy the mass range between that of large gas giant planets (e.g. Jupiter), and the lowest mass stars. With the aid of the laser guide-star AO system, HiCIAO targets dim objects including young stars, protostars, and star-forming regions.

HiCIAO is also extremely useful for detecting faint dust disks around nearby stars, and for studying small-scale and inner disk structures and dust grain properties, both of which lead to a clearer understanding of extra-solar planetary systems and their evolutionary processes. Dr. Suzuki reports that "although we already know of more than 250 extrasolar planets, they have all proven their existence indirectly by the Doppler or transit method. Because the direct imaging of an extrasolar planet has never been done, if it happens, that will be exciting." Subaru Telescope may be the first to directly observe a planet outside our solar system.

For more information about HiCIAO and other innovative technologies operating at Subaru Telescope, visit www.subarutelescope.org. ---VC

Sponsored Recommendations

Precision Motion Control for Photonics: 5 Keys to Success

Aug. 30, 2024
Precision motion control is a key element in the development and production of silicon-photonic devices. Yet, when nanometers matter, it can be challenging to evaluate and implement...

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

Aug. 30, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Motion Control Technologies for Medical Device Joining Applications

Aug. 30, 2024
Automated laser welding is beneficial in medical device manufacturing due to its precision, cleanliness, and efficiency. When properly optimized, it allows OEMs to achieve extremely...

How to Maximize Machine Building Performance with High-Performance Laser Processing

Aug. 30, 2024
Learn how an automotive high-speed laser blanking machine manufacturer builds machines that maximize throughput for faster processing speeds and improved productivity.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!