Simulation shows self-assembly of colloidal icosahedral quasicrystal; can have photonic bandgap

Dec. 23, 2014
Researchers at the University of Michigan (U-M; Ann Arbor, MI) and Argonne National Laboratory (Argonne, IL) have modeled what they call "the most complicated crystal structure ever produced in a computer simulation": an icosahedral quasicrystal whose basic unit can be a nanoparticle or a colloidal particle. Such crystals can be self-assembled from a fluid phase, the simulations show, and could have photonic bandgap properties.

Researchers at the University of Michigan (U-M; Ann Arbor, MI) and Argonne National Laboratory (Argonne, IL) have modeled what they call "the most complicated crystal structure ever produced in a computer simulation": an icosahedral quasicrystal whose basic unit can be a nanoparticle or a colloidal particle. Such crystals can be self-assembled from a fluid phase, the simulations show, and could have photonic bandgap properties.1

The icosahedral symmetry of such crystals is forbidden in a conventional crystal, because icosahedra do not nicely fill space in a periodic manner. But icosahedral quasicrystals are nonperiodic and yet retain long-range order.

"An icosahedral quasicrystal is nature’s way of achieving icosahedral symmetry in the bulk. This is only possible by giving up periodicity, which means order by repetition. The result is a highly complicated structure," says Michael Engel, a U-M researcher.

Icosahedral quasicrystals, commonly found in metal alloys, earned the chemist who discovered them more than 30 years ago a Nobel Prize. But engineers are still searching for efficient ways to make them with other materials.

Due to their high symmetry under rotation, they can have a photonic bandgap. "If icosahedral quasicrystals could be made from nano- and micrometer-sized particles, they could be useful in a variety of applications including communication and display technologies, and even camouflage," said Sharon Glotzer, another U-M researcher.

Source: http://ns.umich.edu/new/releases/22593-world-s-most-complex-crystal-simulated-at-u-michigan

REFERENCE:

1. Michael Engel et al., Nature Materials, published online 08 December 2014; doi:10.1038/nmat4152

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Steering Light: What is the Difference Between 2-Axis Galvo Scanners and Single Mirror 2-Axis Scanners

Dec. 18, 2024
Advantages and limitations of different 2-axis light steering methods: Piezo steering mirrors, voice-coil mirrors, galvos, gimbal mounts, and kinematic mounts.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!