Simulation shows self-assembly of colloidal icosahedral quasicrystal; can have photonic bandgap

Dec. 23, 2014
Researchers at the University of Michigan (U-M; Ann Arbor, MI) and Argonne National Laboratory (Argonne, IL) have modeled what they call "the most complicated crystal structure ever produced in a computer simulation": an icosahedral quasicrystal whose basic unit can be a nanoparticle or a colloidal particle. Such crystals can be self-assembled from a fluid phase, the simulations show, and could have photonic bandgap properties.

Researchers at the University of Michigan (U-M; Ann Arbor, MI) and Argonne National Laboratory (Argonne, IL) have modeled what they call "the most complicated crystal structure ever produced in a computer simulation": an icosahedral quasicrystal whose basic unit can be a nanoparticle or a colloidal particle. Such crystals can be self-assembled from a fluid phase, the simulations show, and could have photonic bandgap properties.1

The icosahedral symmetry of such crystals is forbidden in a conventional crystal, because icosahedra do not nicely fill space in a periodic manner. But icosahedral quasicrystals are nonperiodic and yet retain long-range order.

"An icosahedral quasicrystal is nature’s way of achieving icosahedral symmetry in the bulk. This is only possible by giving up periodicity, which means order by repetition. The result is a highly complicated structure," says Michael Engel, a U-M researcher.

Icosahedral quasicrystals, commonly found in metal alloys, earned the chemist who discovered them more than 30 years ago a Nobel Prize. But engineers are still searching for efficient ways to make them with other materials.

Due to their high symmetry under rotation, they can have a photonic bandgap. "If icosahedral quasicrystals could be made from nano- and micrometer-sized particles, they could be useful in a variety of applications including communication and display technologies, and even camouflage," said Sharon Glotzer, another U-M researcher.

Source: http://ns.umich.edu/new/releases/22593-world-s-most-complex-crystal-simulated-at-u-michigan

REFERENCE:

1. Michael Engel et al., Nature Materials, published online 08 December 2014; doi:10.1038/nmat4152

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

How to Tune Servo Systems: Force Control

Oct. 23, 2024
Tuning the servo system to meet or exceed the performance specification can be a troubling task, join our webinar to learn to optimize performance.

Laser Machining: Dynamic Error Reduction via Galvo Compensation

Oct. 23, 2024
A common misconception is that high throughput implies higher speeds, but the real factor that impacts throughput is higher accelerations. Read more here!

Boost Productivity and Process Quality in High-Performance Laser Processing

Oct. 23, 2024
Read a discussion about developments in high-dynamic laser processing that improve process throughput and part quality.

Precision Automation Technologies that Minimize Laser Cut Hypotube Manufacturing Risk

Oct. 23, 2024
In this webinar, you will discover the precision automation technologies essential for manufacturing high-quality laser-cut hypotubes. Learn key processes, techniques, and best...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!