Solution-produced calcium carbonate microlens arrays are biocompatible

March 26, 2012
Potsdam, Germany--Calcium carbonate microlens arrays can be fabricated quickly and without the need of a cleanroom environment, say researchers at the Max Planck Institute of Potsdam, the University of Konstanz, and KAIST (Daejeon, Korea).

Potsdam, Germany--Calcium carbonate (CaCO3) microlens arrays can be fabricated quickly and without the need of a cleanroom environment, say researchers at the Max Planck Institute of Potsdam, the University of Konstanz, and KAIST (Daejeon, Korea). In the technique, CaCO3 structures form within a few minutes on a solution saturated with calcium; the structures grow into a thin film within one or two hours. With the addition of an organic surfactant, they then form uniform hemispheres in regular arrays. This simplicity is in contrast with conventional photolithographic and other techniques for making microlens arrays.

The researchers could observe clear multiple images of a micron-sized 'A' projected through the array of microlenses. “The high quality of the microlenses was a huge surprise to us,” says Wolfgang Wagermaier, a materials scientist at the Max Planck Institute in Potsdam. “This was the first time anyone had ever demonstrated such optical properties in synthetically produced CaCO3 structures.” The lenses have a diameter of 0.006 mm and a focal length of 0.007 to 0.008 mm.

The researchers took their cue from the natural world: the marine brittlestar Ophiocoma Wendtii is covered with crystalline microlenses of CaCO3, which together form a type of compound eye. The brittlestar's crystalline lenses are aligned so that the birefringence that is typical of CaCO3 does not affect them, meaning that no double image is produced. The lenses are also shaped to correct for spherical aberration.

The researchers were able to demonstrate that their lab-made microlenses are compatible with biological substances; as a result, the lenses could potentially be used in fields such as cell research.

“Deriving fundamental principles for material synthesis from the way in which natural materials are formed is usually an enormous challenge," says Peter Fratzl, who heads the Department of Biomaterials at the Max Planck Institute of Colloids and Interfaces. "Sometimes we also get pleasant surprises, like this discovery of a relatively easy method of producing optical elements modeled on nature."

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Working with Optical Density

Feb. 26, 2025
Optical Density, or OD, is a convenient tool used to describe the transmission of light through a highly blocking optical filter.

Custom-Engineered Optical Solutions for Your Application

Feb. 26, 2025
Explore the newest and most widely used applications of Semrock optical filters.

Linear Stages & Rotary Stages for High Precision Automation & Motion Control

Feb. 13, 2025
Motorized Linear Translation Stages & Rotary Precision Positioning Stages for High Performance Automation & Motion Control | PI USA

Motion Controllers for Precision Positioning and Automation

Feb. 13, 2025
PI manufactures a range of precision motion controllers and drivers for positioning systems, including stepper motors, brushless motors, and servo motors.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!