Boston Micromachines develops DoD-funded free-space communications retro-reflector

March 30, 2010
Cambridge, MA--Boston Micromachines developed a MEMS-based modulating retro-reflector (MRR) for asymmetric free-space covert communication and remote sensor integration.

Cambridge, MA--Boston Micromachines Corporation, a provider of microelectromechanical systems (MEMS)-based optical products for wavefront control systems, developed a modulating retro-reflector (MRR) for asymmetric free-space covert communication and remote sensor integration. Developed in conjunction with Boston University's (Boston, MA) (www.bu.edu) College of Engineering, the compact, portable, ultralow-power, and lightweight MRR was developed for the United States Army.

The MRR allows for long range ground and air-based communication and can be used in a variety of military and non-military applications including battlefield communications, naval situations such as ship-to-ship, and satellite-to-ground station data transfer.

"Optical communication has emerged as a critical need for military operations in situations where conventional radio frequency (RF) channels could be disrupted or unavailable for use," said Paul Bierden, president and CEO of Boston Micromachines. "Our MRR technology is ideal for situations where conventional free-space optical communication hardware cannot be supported due to its size and power consumption. Using extremely low power, our MRRs could be deployed in remote locations, where it would be difficult, if not impossible, to position a traditional optical communications node. Also, weighing only 9 oz., our MRRs could be positioned on a person, soldier or elsewhere, allowing for covert, secure communication."

Boston Micromachines' MRR employs its MEMS modulator mounted in a hollow corner cube retro-reflector for passively reflecting and modulating an interrogating laser source. The modulator mirror is controlled using new resonant, power scavenging high-voltage drive electronics that are capable of 24-hour continuous operation at 180 kHz data rates on a single 9 V battery.

Development for the MRR was funded by an award from the Department of Defense (DoD) through the Small Business Technology Transfer Program (STTR).

About the Author

LFW Staff

Published since 1965, Laser Focus World—a brand and magazine for engineers, researchers, scientists, and technical professionals—provides comprehensive global coverage of optoelectronic technologies, applications, and markets. With 80,000+ qualified print subscribers in print and over a half-million annual visitors to our online content, we are the go-to source to access decision makers and stay in-the-know.

Sponsored Recommendations

How to Tune Servo Systems: Force Control

Oct. 23, 2024
Tuning the servo system to meet or exceed the performance specification can be a troubling task, join our webinar to learn to optimize performance.

Laser Machining: Dynamic Error Reduction via Galvo Compensation

Oct. 23, 2024
A common misconception is that high throughput implies higher speeds, but the real factor that impacts throughput is higher accelerations. Read more here!

Boost Productivity and Process Quality in High-Performance Laser Processing

Oct. 23, 2024
Read a discussion about developments in high-dynamic laser processing that improve process throughput and part quality.

Precision Automation Technologies that Minimize Laser Cut Hypotube Manufacturing Risk

Oct. 23, 2024
In this webinar, you will discover the precision automation technologies essential for manufacturing high-quality laser-cut hypotubes. Learn key processes, techniques, and best...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!