NASA chooses Boston Micromachines for two Phase I space-imaging projects

Jan. 6, 2010
Boston Micromachines Corporation (Cambridge, MA), which provides MEMS (microelectromechanical systems)-based deformable-mirror products for adaptive-optics systems, has been selected by NASA for two Phase 1 contracts.

January 6, 2010--Boston Micromachines Corporation (Cambridge, MA), which provides MEMS (microelectromechanical systems)-based deformable-mirror products for adaptive-optics systems, has been selected by NASA for two Phase 1 contracts. NASA's Small Business Innovation Research Program (SBIR) awarded Boston Micromachines approximately $200,000 in contracts to further space-imaging research. Boston Micromachines projects were chosen from more than 1,600 proposals.

In the first Phase 1 project, Boston Micromachines will develop a compact, ultra-low-power, high-voltage multiplexed driver suitable for integration with the company's deformable mirrors in space-based wavefront-control applications. This project, a collaboration between Boston Micromachines and Boston University (Boston, MA), aims for a driver to be produced with a minimum hundredfold reduction in power consumption and a tenfold reduction in size while maintaining high precision and decreasing cost and interconnection complexity.

The second Phase 1 project is an enhanced fabrication development process for high-actuator-count deformable mirrors which are required for wavefront control in space-based high-contrast imaging instruments. This manufacturing process will overcome the current scalability issues associated with fabricated polysilicon surface micromachined MEMS deformable mirrors. By expanding the size of deformable-mirror devices, space imaging instruments will be able to collect more light and shape its wavefront using less hardware and less stages.

Paul Bierden, president and co-founder of Boston Micromachines, commented that the two SBIRs were the seventh and eighth awarded to the company by NASA. Bierden also noted the importance of the technology to the search for extrasolar planets, which has emerged as a compelling long-term scientific goal for NASA.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Advancing Neuroscience Using High-Precision 3D Printing

March 7, 2025
Learn how Cold Spring Harbor Laboratory Used High-Precision 3D Printing to Advance Neuroscience Research using 3D Printed Optical Drives.

From Prototyping to Production: How High-Precision 3D Printing is Reinventing Electronics Manufacturing

March 7, 2025
Learn how micro 3D printing is enabling miniaturization. As products get smaller the challenge to manufacture small parts increases.

Sputtered Thin-film Coatings

Feb. 27, 2025
Optical thin-film coatings can be deposited by a variety of methods. Learn about 2 traditional methods and a deposition process called sputtering.

What are Notch Filters?

Feb. 27, 2025
Notch filters are ideal for applications that require nearly complete rejection of a laser line while passing as much non-laser light as possible.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!