Machine learning and wrinkle lithography speed up fabrication of broadband light absorbing surfaces for solar cells

Aug. 4, 2017
The resulting quasirandom structures in amorphous silicon absorb 160% more light in the 800 to 1200 nm range.

Researchers at Northwestern University (Evanston, IL) have used mathematics and machine learning to design an optimal material for light management in photovoltaic cells, then fabricated the nanostructured surfaces simultaneously with a new nanomanufacturing technique called wrinkle lithography.1

The fast, highly scalable, streamlined method could replace cumbersome trial-and-error nanomanufacturing and design methods.

Nanophotonic materials and surface treatments are especially useful for light absorption in ultrathin, flexible solar cells. (Other potential uses include anti-wet surfaces and dyeless color in clothing.) For solar cells, the ideal nanostructure surface has quasirandom structures, which appear random but do have a pattern. Designing these patterns can be difficult and time consuming, since there are thousands of geometric variables that must be optimized simultaneously to discover the optimal surface pattern to absorb the most light.

To bypass the issues of nanolithography, the researchers manufactured the quasirandom structures in amorphous silicon using wrinkle lithography, a new nanomanufacturing technique in which wrinkle patterns are rapidly transferred into different materials to realize a nearly unlimited number of quasirandom nanostructures. Formed by applying strain to a substrate, wrinkling is a simple method for the scalable fabrication of nanoscale surface structures.

"Importantly, the complex geometries can be described computationally with only three parameters -- instead of thousands typically required by other approaches," says Teri Odom, a professor of chemistry at Northwestern. "We then used the digital designs in an iterative search loop to determine the optimal nanowrinkles for a desired outcome."

The team demonstrated the concurrent design and manufacturing method to fabricate 3D photonic nanostructures on a silicon wafer for potential use as a solar cell. The resulting material absorbed 160% more light than other designs in the 800 to 1200 nm wavelength range -- a range in which current solar cells are less efficient.

Next, the team plans to apply its method to other materials, such as polymers, metals, and oxides, for other photonics applications.

Source: https://www.eurekalert.org/pub_releases/2017-08/nu-sda080417.php

REFERENCE:

1. Won-Kyu Lee et al., PNAS (2017); http://www.pnas.org/content/early/2017/07/26/1704711114.full

Sponsored Recommendations

Working with Optical Density

Feb. 26, 2025
Optical Density, or OD, is a convenient tool used to describe the transmission of light through a highly blocking optical filter.

Custom-Engineered Optical Solutions for Your Application

Feb. 26, 2025
Explore the newest and most widely used applications of Semrock optical filters.

Linear Stages & Rotary Stages for High Precision Automation & Motion Control

Feb. 13, 2025
Motorized Linear Translation Stages & Rotary Precision Positioning Stages for High Performance Automation & Motion Control | PI USA

Motion Controllers for Precision Positioning and Automation

Feb. 13, 2025
PI manufactures a range of precision motion controllers and drivers for positioning systems, including stepper motors, brushless motors, and servo motors.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!