Hyperlens crystal is capable of viewing living cells at nanometer scale

Dec. 11, 2017
The lens will image living cells in their natural environments using low-energy infrared light.

An optical lens that can resolve features the size of a small virus on the surface of a living cell in its natural environment has been developed by a team of researchers led by Joshua Caldwell, associate professor of mechanical engineering at Vanderbilt University (Nashville, TN).1 The lens was made possible due to a fundamental advance in the quality of an optical material used in hyperlensing, a method of creating lenses that can resolve objects much smaller than the wavelength of light.

The optical material involved is hexagonal boron nitride (hBN), a natural crystal with hyperlensing properties. The best previously reported resolution using hBN was an object about 36 times smaller than the infrared wavelength used: about the size of the smallest bacteria. The new paper describes improvements in the quality of the crystal that enhance its potential imaging capability by about a factor of ten.

RELATED: New twists on superlenses improve subwavelength microscopy

The researchers achieved this enhancement by making hBN crystals using isotopically purified boron. Natural boron contains two isotopes that differ in weight by about 10%, a combination that significantly degrades the crystal's optical properties in the infrared.

Researchers from the University of California, San Diego, Kansas State University, Oak Ridge National Laboratory and Columbia University also contributed to the study.

The researchers calculate that a lens made from their purified crystal can in principle capture images of objects as small as 30 nm in size. The conventional diffraction limit of about a half a wavelength is surpassed by using hBN due to its ability to support surface phonon polaritons, hybrid particles made up of photons of light coupling with vibrating, charged atoms in a crystal that have wavelengths much shorter than the incident light.

In the past, the problem with using polaritons in this fashion has been the rapidity with which they dissipate. By using hBN crystals made from 99% isotopically pure boron, the researchers measured a dramatic reduction in optical losses compared to natural crystals, increasing the polariton's lifetime three-fold, which allows them to travel triple the distance. This improvement translates into a significant improvement in imaging resolution. The researchers' theoretical analysis suggests that another factor of ten improvement is possible.

Source: https://news.vanderbilt.edu/2017/12/11/hyperlens-crystal-capable-of-viewing-living-cells-in-unprecedented-detail/

REFERENCE:

1. Alexander J. Giles et al., Nature Materials (2017); doi: 10.1038/nmat5047

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Steering Light: What is the Difference Between 2-Axis Galvo Scanners and Single Mirror 2-Axis Scanners

Dec. 18, 2024
Advantages and limitations of different 2-axis light steering methods: Piezo steering mirrors, voice-coil mirrors, galvos, gimbal mounts, and kinematic mounts.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!