Lumera Develops Unprecedented Electro-Optic Polymer to Fabricate Optical Devices

Sept. 3, 2004
Bothell, WA, September 3, 2004--(PR Newswire) Lumera Corporation announced today it has developed a revolutionary electro-optic polymer -- a molecularly engineered material -- that is about five times more efficient than the inorganic material currently used to fabricate active optical devices and is expected to dramatically improve optical equipment-serving industries ranging from telecommunications to high speed computers.

Bothell, WA, September 3, 2004--(PR Newswire) Lumera Corporation announced today it has developed a revolutionary electro-optic polymer -- a molecularly engineered material -- that is about five times more efficient than the inorganic material currently used to fabricate active optical devices and is expected to dramatically improve optical equipment-serving industries ranging from telecommunications to high speed computers.

"We believe this nanotechnological breakthrough, particularly as it relates to the materials developed by Lumera, could have a significant impact on the development of the optical equipment and optical interconnect markets," said Thomas D. Mino, chief executive officer. The electro-optic polymer breakthrough resulted from a partnership between Lumera and the University of Washington. University of Washington professors, Larry Dalton and Alex Jen, have used "nano-tailoring" to increase electro-optic activity that produces substantially more efficiency than that of existing materials.

For their part of the partnership, Lumera's team of scientists adapted internally developed materials to achieve electro-optic coefficients of 160 pm/V at telecom operating wavelengths, a number that is approximately 20 percent higher than existing materials.

"As we transition to these nano-engineered materials, their outstanding performance will allow a greater number of options in device design," continued Mino. "For example, we can drive down the operating voltage, increase the bandwidth, decrease the size and reduce the cost of optical modulators and optical interconnects. Additionally, polymers can be processed into device architectures such as Mach-Zehnder interferometers, directional couplers, and micro-ring resonators. The relative ease and precision with which these different devices can be fabricated is the significant advantage of polymer materials."

The company is developing modulators that have highly linear responses for cable TV (CATV) optical links and hybrid wireless/fiber optic networks. Additionally, external modulators that can operate at 10-40 GHz in metro applications, transponders, and long-haul fiber optic network build-outs are being evaluated. All have broad potential in markets that are gaining momentum in North America, Europe, and Asia. The markets for these various products are forecasted to be greater than $5 billion by 2007.

Sponsored Recommendations

Working with Optical Density

Feb. 26, 2025
Optical Density, or OD, is a convenient tool used to describe the transmission of light through a highly blocking optical filter.

Custom-Engineered Optical Solutions for Your Application

Feb. 26, 2025
Explore the newest and most widely used applications of Semrock optical filters.

Linear Stages & Rotary Stages for High Precision Automation & Motion Control

Feb. 13, 2025
Motorized Linear Translation Stages & Rotary Precision Positioning Stages for High Performance Automation & Motion Control | PI USA

Motion Controllers for Precision Positioning and Automation

Feb. 13, 2025
PI manufactures a range of precision motion controllers and drivers for positioning systems, including stepper motors, brushless motors, and servo motors.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!