Light-driven brake stops molecular machines

July 1, 2008
Molecular machines (either synthetic or biological) are defined as molecules or groups of molecules that perform mechanical-like movements in response to certain stimuli (light, electricity, or chemical energy).

Molecular machines (either synthetic or biological) are defined as molecules or groups of molecules that perform mechanical-like movements in response to certain stimuli (light, electricity, or chemical energy). Because a braking system is important for any moving object, researchers at National Taiwan University and Academia Sinica (both in Taipei, Taiwan) have developed the first light-driven, room-temperature molecular brake.

Based on nuclear magnetic resonance (NMR) studies, spectral simulations, and molecular modeling, it is possible to calculate the rotation rate of the rigid pentiptycene group, a four-bladed wheel structure that can exhibit two different motion states (trans-1 and cis-1). In dichloromethane solution at 298 K, the pentiptycene wheel freely rotates in a trans-1 state but slows by nine orders of magnitude in the cis-1 state. The two states can be switched by using different wavelengths of light (306 and 254 nm) due to the wavelength-sensitive dinitrostyryl group within the pentiptycene. This molecular “brake” could be attached to other molecular machines in solution to effectively control or stop their motion as a function of illumination wavelength. Contact Jye-Shane Yang at [email protected].

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!