3-D stability analysis predicts optofluidic interactions in waveguides

March 1, 2008
Building on previous work in optofluidics using polymer waveguides, engineers from Cornell University (Ithaca, NY) have devised a comprehensive model for particle-trapping stability analysis of dielectric particles in an evanescent field of low-index and high-index solid-core waveguide structures integrated with microfluidics.

Building on previous work in optofluidics using polymer waveguides, engineers from Cornell University (Ithaca, NY) have devised a comprehensive model for particle-trapping stability analysis of dielectric particles in an evanescent field of low-index and high-index solid-core waveguide structures integrated with microfluidics (see www.laserfocusworld.com/articles/314424Their approach, which is outlined in detail in Nanotechnology 19, 045704 (January 2008), could have important implications for the design of lab-on-a-chip devices.

Models for predicting propulsive velocities and trapping forces within a static fluidic environment are not new. However, developing a practical optofluidic transport system requires understanding the conditions that bring a particle to a waveguide trap and remain stably trapped within the evanescent field. David Erickson and colleagues in Cornell’s School of Chemical and Biomolecular Engineering and Sibley School of Mechanical and Aerospace Engineering used three-dimensional finite-element-based simulations to determine the electromagnetic and hydrodynamic field variables for two different waveguide systems: silicon (1550 nm) and polymer (1064 nm). A trapping stability number was obtained by comparing the work required to remove a particle from the waveguide with available random thermal energy. These forces were then correlated to controllable experimental parameters such as particle size, fluid velocity, and channel height and a series of trapping stability diagrams was produced, detailing the conditions under which optofluidic transport is possible. Contact David Erickson at [email protected].

Sponsored Recommendations

Melles Griot Optical Systems and Semrock Optical Filters for Spatial Biology

Feb. 26, 2025
Discover why a robust, high-throughput fluorescence imaging system with Semrock optical filters is key for Spatial Biology.

Working with Optical Density

Feb. 26, 2025
Optical Density, or OD, is a convenient tool used to describe the transmission of light through a highly blocking optical filter.

Finding the Right Dichroic Beamsplitter

Feb. 26, 2025
Unsure how to select the right dichroic beamsplitter? Explore our selection guide for our wide variety of 45º dichroic beamsplitters.

Measurement of Optical Filter Spectra

Feb. 26, 2025
Learn about the limitations of standard metrology techniques and how Semrock utilizes different measurement approaches to evaluate filter spectra.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!