3D printer uses two-photon lithography for nanoprecision

March 12, 2012
Vienna, Austria--3D objects only microns in size can be fabricated with a 3D printer that relies on two-photon lithography for its precision.

Vienna, Austria--3D objects only microns in size can be fabricated with a 3D printer that relies on two-photon lithography for its precision. The device, created by researchers at the Vienna University of Technology (TU Vienna), benefits from an orders-of-magnitude improvement in speed arising from the researchers' innovations. This opens up completely new areas of application, such as in medicine.

Fast mirrors

The 3D printer uses a liquid resin that is hardened by a focused laser beam guided through the resin by scanning mirrors. The result is a hardened line of solid polymer a few hundred nanometers wide. “Until now, this technique used to be quite slow,” says Jürgen Stampfl from the Institute of Materials Science and Technology at TU Vienna. “The printing speed used to be measured in millimeters per second; our device can do five meters in one second.”

Several new ideas were combined to achieve the higher speed. “It was crucial to improve the steering mechanism of the mirrors,” says Jan Torgersen, also of TU Vienna. The mirrors are continuously in motion during the printing process; the acceleration and deceleration-periods have to be tuned very precisely to achieve high-resolution results at a record-breaking speed.

Chemistry plays an important role too. “The resin contains molecules which are activated by the laser light. They induce a chain reaction in other components of the resin, so-called monomers, and turn them into a solid,” says Torgersen. These initiator molecules are only activated if they absorb two photons at once, which only happens in the very center of the beam where the intensity is highest. In contrast to conventional 3D-printing techniques, solid material can be created anywhere within the liquid resin rather than on top of the previously created layer only. Therefore, the working surface does not have to be specially prepared before the next layer can be produced, which saves a lot of time. A team of chemists led by Robert Liska at TU Vienna developed the suitable ingredients for this special resin.

TU Vienna scientists are now developing biocompatible resins for medical applications that can be used to create scaffolds to which living cells can attach themselves, enabling systematic creation of biological tissues.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Electroplating 3D Printed Parts

Jan. 24, 2025
In this blog post, you'll learn about plating methods to enhance the engineering performance of resin micro 3D printed parts.

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Steering Light: What is the Difference Between 2-Axis Galvo Scanners and Single Mirror 2-Axis Scanners

Dec. 18, 2024
Advantages and limitations of different 2-axis light steering methods: Piezo steering mirrors, voice-coil mirrors, galvos, gimbal mounts, and kinematic mounts.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!