Modeled plasmonic luminescent solar concentrator shows 32.6% optical efficiency

Aug. 6, 2013
Luminescent solar concentrators consist of a flat pane of transparent material doped with dye fluorophores; some of the sunlight absorbed by the dye is re-emitted and totally internally reflected to the edges of the pane, where photovoltaic cells collect it.

Luminescent solar concentrators consist of a flat pane of transparent material doped with dye fluorophores; some of the sunlight absorbed by the dye is re-emitted and totally internally reflected to the edges of the pane, where photovoltaic cells collect it. Such a setup concentrates light without the need for tracking the sun, and can even concentrate light on cloudy days. However, the efficiency of a conventional luminescent concentrator cannot be boosted above about 10%, due to reabsorption losses, escape-cone losses, and low spectral efficiency.

But this limit does not hold if silver nanoparticles are added to the concentrator, at least according to a hybrid nanoscale/macroscale simulation done by a group at University College London (London, England). The model predicts a phenomenal rise in normalized optical efficiency from 10.4% to 32.6% when silver nanospheres are immersed in one or more thin dye layers (sandwiched between undyed, nanosphere-lacking layers). The researchers modeled three configurations: nanospheres, nanoshells, and flat discs (with the discs placed atop the dye layer), with particle radii of 30, 50, or 70 nm and varying concentrations of particles, for concentrator pane sizes from 50 to 1000 mm on a side. Nanospheres worked best, resulting in an efficiency of 23.7% for one plasmonic layer and 32.6% for three layers (each layer 600 nm thick with a nanoparticle coverage of 12.3%). The efficiency enhancement is due mostly to scattering by the particles. Contact Clemens Tummeltshammer at [email protected].

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Steering Light: What is the Difference Between 2-Axis Galvo Scanners and Single Mirror 2-Axis Scanners

Dec. 18, 2024
Advantages and limitations of different 2-axis light steering methods: Piezo steering mirrors, voice-coil mirrors, galvos, gimbal mounts, and kinematic mounts.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!