3D holograms assist battle preparation

Jan. 11, 2013
Holographic maps developed by Zebra Imaging and sponsored by a US Army contract allow soldiers to view three-dimensional (3D) landscapes and cityscapes prior to entering a battle zone.

Holographic maps developed by Zebra Imaging (Austin, TX) and sponsored by a US Army contract allow soldiers to view three-dimensional (3D) landscapes and cityscapes prior to entering a battle zone. The technology, which has other uses in both military and civilian applications, relies on software that converts light detection and ranging (lidar) data into an up to 24 × 36 sq-in. rollable laser-written holographic display that can be observed using a simple flashlight, without the need for special viewing glasses or goggles. As the display is moved, 3D details of the scene can be observed from different angles, with a perceived depth up to 30 cm.

The full-parallax 3D display allows groups of individuals to view the map simultaneously, providing a crucial advantage on the battlefield for soldiers in unfamiliar terrain. The laser-written maps, created from open-source images and lidar data, can be produced in just a few hours and shipped to the field in 7–10 days. To date, around 13,000 of the maps have been deployed for combat use. Born out of a Defense Advanced Research Projects Agency (DARPA; Arlington, VA) program, Zebra Imaging is now working on a dynamic display that would use satellite imagery to update the display in near real time. Contact Eric Doane at [email protected].

About the Author

Gail Overton | Senior Editor (2004-2020)

Gail has more than 30 years of engineering, marketing, product management, and editorial experience in the photonics and optical communications industry. Before joining the staff at Laser Focus World in 2004, she held many product management and product marketing roles in the fiber-optics industry, most notably at Hughes (El Segundo, CA), GTE Labs (Waltham, MA), Corning (Corning, NY), Photon Kinetics (Beaverton, OR), and Newport Corporation (Irvine, CA). During her marketing career, Gail published articles in WDM Solutions and Sensors magazine and traveled internationally to conduct product and sales training. Gail received her BS degree in physics, with an emphasis in optics, from San Diego State University in San Diego, CA in May 1986.

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!