CMU giving smartphone-compatible facial analysis software to fellow researchers

Dec. 17, 2015
Carnegie Mellon University will make available to fellow researchers its advanced software for tracking facial features.

In a celebration of the new year, Carnegie Mellon University's (Pittsburgh, PA) Human Sensing Laboratory will make available to fellow researchers its advanced software for tracking facial features and recognizing emotions, filling a gap that has slowed development for real-time facial image analysis applications.

RELATED ARTICLE: Still overcoming challenges, facial recognition technology advances

Automated facial analysis is at the heart of a host of potential applications, from monitoring the emotional state of patients to detecting whether a public speaker is losing an audience’s attention. Fernando De la Torre, associate research professor in the Robotics Institute, said releasing the latest version of the software, called IntraFace, will help expand those applications by giving researchers access to its state-of-the-art capabilities.

"IntraFace provides a breakthrough in facial feature tracking that simplifies the problem of facial image analysis, working rapidly, accurately and with such efficiency that it can run on most smartphones," De la Torre said. "Now it's time to develop new applications for this technology. We have a few of our own, but we believe there are lots of people who may have even better ideas once they get their hands on it."

The new software will be available in February at the Human Sensing Lab Website, and released as a package that makes it easier to use. In the meantime, free demonstration apps, which show how IntraFace can identify facial features and detect emotions, can be downloaded from the lab site or from Apple's App Store (https://itunes.apple.com/us/app/intraface/id937424937?mt=8) for iPhones and from Google Play (https://play.google.com/store/apps/details?id=com.intraface.intraface&hl=en) for Android phones.

Automated facial expression analysis has been a long-standing goal of computer vision researchers and tremendous advances have occurred over the last 20 years, De la Torre said. Commercial software and analysis services are now available but often can be difficult to use. They also are computationally intensive, and their performance can vary from one individual to another. IntraFace is the result of a decade of work by De la Torre and his colleagues, including Jeffrey Cohn, a professor of psychology and psychiatry at the University of Pittsburgh and an adjunct professor in CMU’s Robotics Institute.

To increase its efficiency and help it work reliably with most faces, the researchers used machine learning techniques to train the software to recognize and track facial features. The researchers then created an algorithm that can take this generalized understanding of the face and personalize it for an individual, enabling expression analysis.

The result is that IntraFace is both accurate and fast. It occupies less computer memory than other methods and requires less power to run, making it suitable for use on a wide range of platforms, including smartphones and embedded systems.The potential applications are many, including distracted or drowsy driver detection, automated analysis of marketing focus groups, animation of avatars in multi-player video games, human-robot interaction, and monitoring or detection of depression, anxiety and other disorders.

Over the last two years, as De la Torre and his team have begun presenting their work at scientific conferences, the software has been downloaded thousands of times and elements of the patent-pending technology have been incorporated into some commercial apps. The technology can be used for research purposes for free; licensing for commercial use is available.

SOURCE: Carnegie Mellon University; http://www.cmu.edu/news/stories/archives/2015/december/facial-image-analysis.html

About the Author

Gail Overton | Senior Editor (2004-2020)

Gail has more than 30 years of engineering, marketing, product management, and editorial experience in the photonics and optical communications industry. Before joining the staff at Laser Focus World in 2004, she held many product management and product marketing roles in the fiber-optics industry, most notably at Hughes (El Segundo, CA), GTE Labs (Waltham, MA), Corning (Corning, NY), Photon Kinetics (Beaverton, OR), and Newport Corporation (Irvine, CA). During her marketing career, Gail published articles in WDM Solutions and Sensors magazine and traveled internationally to conduct product and sales training. Gail received her BS degree in physics, with an emphasis in optics, from San Diego State University in San Diego, CA in May 1986.

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!