NanoSight nanoparticle characterization software eliminates need for labeling

Aug. 9, 2011
Zeta Potential Nanoparticle Tracking Analysis (Z-NTA) software measures surface charge in polydisperse and complex suspensions, simultaneously reporting size, light scattering intensity, fluorescence, and count.

Zeta Potential Nanoparticle Tracking Analysis (Z-NTA) software measures surface charge in polydisperse and complex suspensions, simultaneously reporting size, light scattering intensity, fluorescence, and count. The software collects data on a particle-by-particle basis without the need for labeling, but a fluorescence mode option further differentiates suitable-labeled sub-populations. All data sets are validated by real-time observation of particles moving under both electrophoretic and Brownian motion.
NanoSight
Amesbury, England
www.nanosight.com

More Products

-----

PRESS RELEASE

NanoSight adds Zeta Potential measurement capability to the most versatile tool for nanoparticle characterization

Salisbury, UK, 14th March 2011: NanoSight, world-leading manufacturers of unique nanoparticle characterization technology announce the release of Zeta Potential Analysis applying Z-NTA, particle by particle characterization of surface charge. Z-NTA will make its public debut at the US Pittsburgh Conference & Exposition being held in 2011 in Atlanta, Georgia from March 14th until 17th, booth #519.

Zeta Potential Nanoparticle Tracking Analysis (Z-NTA) adds measurement of surface charge to simultaneous reporting of size, composition (light scattering intensity), fluorescence and count. As with NTA, the core of NanoSight’s world-accepted nanoparticle measurement systems, it collects data on a particle-by-particle basis. No other methodology comes close to providing such simultaneous, multiparameter nanoparticle characterization.

Zeta potential is measured particle-by-particle, simultaneously for the complete sample population to provide data that is number weighted not intensity weighted. Size and light scattering intensity are also reported. Polydisperse and complex suspensions are readily characterized. No labelling is required but a fluorescence mode option is available to further differentiate suitable-labelled sub-populations. All data sets are validated by real time observation of particles moving under both electrophoretic and Brownian motion.

The user benefits are clear to define. Variations in zeta potential with size are analyzed with positively and negatively charged particles being reported separately even when they exist together. Sub-populations of similar sized particles of different materials, differentiated by their propensity to scatter light, are separately reported and counted. As with size distribution measurement, changes in Zeta Potential distribution with pH, concentration and temperature may be studied. Similarly, aggregation and flocculation may be studied quantitatively in real-time. Suitable labelling can highlight one sub-population for analysis despite high background noise.

With applications transcending the life sciences through the materials sciences, NanoSight have installed more than 300 systems worldwide as NTA-based characterization becomes increasingly accepted as the technique to quantitatively study nanoparticles. To learn more about nanoparticle characterization using Nanoparticle Tracking Analysis, NTA, please visit the company website (www.nanosight.com) and register for the latest issue of NanoTrail, the company’s electronic newsletter.

About NanoSight
NanoSight delivers the world’s most versatile and proven multi-parameter nanoparticle analysis in a single instrument.

NanoSight visualizes, measures and characterizes virtually all nanoparticles. Particle size, concentration, Zeta potential and aggregation can all be analyzed while a fluorescence mode provides differentiation of labelled particles. NanoSight presents real time monitoring of the subtle changes in the characteristics of particle populations with all of these analyses uniquely confirmed by visual validation.

NanoSight’s “Nanoparticle Tracking Analysis” (NTA) detects and visualizes populations of nanoparticles in liquids down to 10nm, dependent on material, and measures the size of each particle from direct observations of diffusion. This particle-by-particle methodology goes beyond traditional light scattering and other ensemble techniques in providing high-resolution particle size distributions. Additionally, NanoSight measures concentration and validates data with information-rich video files of the particles moving under Brownian motion.

NanoSight’s comprehensive characterization matches the demands of complex biological systems, hence its wide application in development of drug delivery systems, of viral vaccines, in nanotoxicology and in biodiagnostics. This real-time data gives insight into the kinetics of protein aggregation and other time-dependent phenomena in a qualitative and quantitative manner.

NanoSight has a growing role in biodiagnostics, being proven in detection and speciation of nanovesicles (exosomes) and microvesicles. As functionalized nanoparticles increasingly fulfill their potential in biodiagnostics, NanoSight is ever more the analytical platform of choice.

NanoSight demonstrates worldwide success through rapid adoption of NTA, having installed more than 300 systems worldwide with users including BASF, GlaxoSmithKline, Merck, Novartis, Pfizer, Proctor and Gamble, Roche and Unilever together with the most eminent universities and research institutes. In addition to this user base more than 150 third party papers citing NanoSight results consolidate NanoSight’s leadership position in nanoparticle characterization. For more information, visit the NanoSight website (www.nanosight.com).

-----

Posted by Lee Mather

Follow us on Twitter

Follow OptoIQ on your iPhone; download the free app here.

Subscribe now to Laser Focus World magazine; it's free!

Sponsored Recommendations

How to Tune Servo Systems: Force Control

Oct. 23, 2024
Tuning the servo system to meet or exceed the performance specification can be a troubling task, join our webinar to learn to optimize performance.

Laser Machining: Dynamic Error Reduction via Galvo Compensation

Oct. 23, 2024
A common misconception is that high throughput implies higher speeds, but the real factor that impacts throughput is higher accelerations. Read more here!

Boost Productivity and Process Quality in High-Performance Laser Processing

Oct. 23, 2024
Read a discussion about developments in high-dynamic laser processing that improve process throughput and part quality.

Precision Automation Technologies that Minimize Laser Cut Hypotube Manufacturing Risk

Oct. 23, 2024
In this webinar, you will discover the precision automation technologies essential for manufacturing high-quality laser-cut hypotubes. Learn key processes, techniques, and best...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!