Optically Pumped Semiconductor Laser Advantages: Wavelength Flexibility without Compromise

Oct. 2, 2018
The article explains the unique wavelength scaling advantage of Optically Pumped Semiconductor Laser technology that is a major reason behind the widespread use of OPSLs in life sciences, light shows, and beyond.

The Optically Pumped Semiconductor Laser (OPSL) technology offers numerous advantages over other types of CW lasers, including wavelength flexibility. In particular, an OPSL can be designed to match the wavelength requirements of the application, which represents a paradigm shift over legacy technologies. This is a major reason why OPSLs are the lasers of choice in applications across the life sciences, as well as for entertainment/light shows, scientific research, and many other applications.

Gas lasers and diode pumped solid state (DPSS) lasers are limited to specific wavelengths that are inherent to the gain material. Typical examples are argon ion lasers at 488 nm and DPSS lasers at 532. There is no easy option to produce say 498 nm or 542 nm output. Conversely, diode laser technology can be custom designed to produce arbitrary wavelengths over a wide range of the visible and near-IR spectrum. But these edge emitters have optical limitations which affect their spectral brightness and are still limited to very low powers for green, yellow and orange wavelengths for example.

Figure 1. Coherent offers OPSLs at numerous standard wavelengths and produces custom wavelengths for OEMs.

In an OPSL, the gain medium is a semiconductor disk pumped by diode laser(s). The details of the semiconductor can be designed to produce a fixed output wavelength anywhere over a broad range. But unlike laser diodes, this gain chip is based on a surface emitting geometry which delivers a high-quality TEM00 circular output beam. Plus the OPSL architecture provides efficient cooling of the gain chip with no thermal lensing. So OPSL technology is also power scalable: from milliwatts to tens of watts. And just as important, the power of an OPSL can be user adjusted from 10-100% with no impact on beam pointing. This enables easy alignment and setup as well as power optimization for applications like super resolution microscopy where this is a critical need.

To read the full whitepaper, click here.

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

White Paper: Improving Photonic Alignment

Dec. 18, 2024
Discover how PI's FMPA Photonic Alignment Technology revolutionized the photonics industry, enabling faster and more economical testing at the wafer level. By reducing alignment...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!