A Turnkey Solution to Combining Multiple Laser Wavelengths

Oct. 2, 2018
Fluorescence microscopy increasingly uses multiple laser wavelengths. Watch this video to see how the OBIS product line provides a plug and play solution to combine up to eight lasers.

Fluorescence microscopy experiments are becoming increasingly sophisticated and complex and often require exciting multiple probes in a single combined image. Selectively exciting multiple probes means combining multiple laser wavelengths into a microscope, which can be a major optomechanical challenge for OEMs and end users, potentially requiring hours and even days with a skilled technician. The OBIS product line has been designed to completely eliminate this challenge and to bring plug and play simplicity, so lasers can be added or swapped in minutes, with no user alignment.

OBIS lasers are smart self-contained lasers packaged in a common format, with identical electronic and optical interfaces regardless of wavelength. The easiest way to combine multiple lasers into a microscope is to use OBIS FP series lasers which are fiber-pigtailed with single mode polarization maintaining fiber output.

These can then be combined into a single fiber in the OBIS Galaxy patented beam combiner. This unique rugged module (U.S. patent number 8599487) accepts up to 8 fiber inputs at wavelengths chosen by the customer: options include 405, 445, 458, 488, 514, 532, 552, 561, 588, 594, and 640 nm. Lasers are connected into Galaxy using standard (FC/UFC) inputs. The performance of this device is both stable and repeatable; instead of hours or painstaking alignment adjustment, lasers now can be effortlessly replaced in minutes.

Your browser does not support the video tag.

The output of Galaxy is a standard FC/APC with extended life interface for superior reliability. Also available is a new FC/PC8 output fiber connector compatible with “Spinning Disk” type microscopy. Throughput is typically 75% for each laser.

End users will appreciate the further convenience of optionally mounting the lasers together in the OBIS Laser Box. This offers all the features from the laser in a convenient CDRH-compliant interface with convection cooling for five lasers, acting as a smart, integrated multi-wavelength laser.

View the OBIS Galaxy Integrated System datasheet to learn more.

Sponsored Recommendations

How to Tune Servo Systems: Force Control

Oct. 23, 2024
Tuning the servo system to meet or exceed the performance specification can be a troubling task, join our webinar to learn to optimize performance.

Laser Machining: Dynamic Error Reduction via Galvo Compensation

Oct. 23, 2024
A common misconception is that high throughput implies higher speeds, but the real factor that impacts throughput is higher accelerations. Read more here!

Boost Productivity and Process Quality in High-Performance Laser Processing

Oct. 23, 2024
Read a discussion about developments in high-dynamic laser processing that improve process throughput and part quality.

Precision Automation Technologies that Minimize Laser Cut Hypotube Manufacturing Risk

Oct. 23, 2024
In this webinar, you will discover the precision automation technologies essential for manufacturing high-quality laser-cut hypotubes. Learn key processes, techniques, and best...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!