Case Study: EP39-2 Adhesive Aids in Photoelectrochemical Application

Sept. 24, 2017
University of Hawaii researchers, under the sponsorship of the Department of Energy, were looking to develop photoelectrochemical (PEC) systems to produce hydrogen directly from water using sunlight as the energy source. These PEC systems need to be highly efficient (offering solar-to-chemical conversion rates of 10-15%), potentially low cost and long operating lifetimes.

The Application

University of Hawaii researchers, under the sponsorship of the Department of Energy, were looking to develop photoelectrochemical (PEC) systems to produce hydrogen directly from water using sunlight as the energy source. These PEC systems need to be highly efficient (offering solar-to-chemical conversion rates of 10-15%), potentially low cost and long operating lifetimes.

Key Parameters and Requirements

The researchers determined that the development of multijunction photoelectrodes comprised of a semiconductor, catalytic and protective thin films applied to low cost substrates like stainless steel was the key to achieving their goals. The photo electrodes were fabricated from amorphous silicon (a-Si) and copper-idium-gallium-diselenide (CIGS) and required the use of a highly transparent and stable polymer adhesive as a photoelectrode encapsulant.

The Results

Of the materials tested, Master Bond EP39-2, a transparent epoxy, delivered the best results. Specifically designed for potting optoelectronic devices, this system was found to have excellent optical properties (see graph below) and good stability in potassium hydroxide (KOH).

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!