MAKING DIGITAL RADIOGRAPHY MORE ACCESSIBLE

Nov. 9, 2018
The digital radiography market is growing—and it’s no wonder since flat-panel and other detectors present numerous benefits to the healthcare field. For example, patients are exposed to less radiation with digital x-rays than with traditional film x-rays.

Simplifying the MTF calculation during the optical design process for a less expensive and time-intensive design

The digital radiography market is growing—and it’s no wonder since flat-panel and other detectors present numerous benefits to the healthcare field. For example, patients are exposed to less radiation with digital x-rays than with traditional film x-rays. In addition, using sensors instead of film means that results can be read immediately versus waiting for film to process—and the images are higher quality, able to be lightened, darkened, or zoomed for better visibility. What’s more, password-protected digital patient files are more secure than film printouts stored in filing cabinets.

The importance of MTF in developing digital detectors

Modulation Transfer Function (MTF) is an important method of describing the performance of an optical system. A consequence of applying Fourier theory to image forming optical systems, MTF describes the contrast in the image of a spatial frequency presented in the scene being viewed.

For imaging systems, the performance specification is often MTF at a given spatial frequency. This is especially important for systems with digital detectors, where spatial frequencies beyond a certain value are not needed and mid-range frequency performance is desired.

Optimizing directly on MTF is difficult, though. The calculation is computationally expensive and tends to be badly behaved in the early stages of a design, so that other optimization methods are needed until the system is very close to its final form.

The Contrast Optimization feature in OpticStudio by Zemax largely solves these problems. Instead of calculating the full MTF, it measures the phase differences in the exit pupil across a distance corresponding to the desired spatial frequency in the MTF. This quantity can be used to construct a merit function during optimization that has a minimum in the same location as the MTF. The method is much faster and more well-behaved than a direct optimization on the MTF value. This can help optical designers get to a high-confidence digital detector design, faster.

eGuide: Optimizing for MTF Performance using Contrast Optimization

Contrast Optimization in OpticStudio allows for robust and efficient optimization on the system MTF at a given spatial frequency. Download the eGuide to see how it works.

GET THE eGUIDE >

Sponsored Recommendations

March 31, 2025
Enhance your remote sensing capabilities with Chroma's precision-engineered optical filters, designed for applications such as environmental monitoring, geospatial mapping, and...
March 31, 2025
Designed for compatibility with a wide range of systems, Chroma's UV filters are engineered to feature high transmission, superior out-of-band blocking, steep edge transitions...
March 31, 2025
Discover strategies to balance component performance and system design, reducing development time and costs while maximizing efficiency.
March 31, 2025
Explore the essential role of optical filters in enhancing Raman spectroscopy measurements including the various filter types and their applications in improving signal-to-noise...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!