Santa Barbara Infrared introduces blackbody system developed for COVID-19 body-temperature detection

April 29, 2020
The Nightingale body-temperature reference (BTR) thermal source is designed for use in thermal-imaging body-temperature screening systems.

Santa Barbara Infrared (SBIR; Santa Barbara, CA), which manufactures advanced infrared (IR) and electro-optical (E-O) test hardware for medical, aerospace, and defense applications, has unveiled what it calls the Nightingale body-temperature reference (BTR) blackbody system for human body-temperature detection.

The company says that the blackbody system provides a highly stable, uniform, low-cost, and easy-to-operate thermal source for the detection of human body temperatures. The BTR system is designed for use in thermal-imaging body-temperature screening systems.

Nightingale has a “set and forget” temperature-programming function that is configurable to Celsius or Fahrenheit, with settable temperature ranges above ambient from 30° to 45°C (86° to 113°F). SBIR’s thermal source/blackbody system has a 3 × 3 in. emitting aperture, a USB communication interface, and average emissivity of >0.950 mid-wave infrared (MWIR) through long-wave infrared (LWIR). SBIR says it has a temperature accuracy of ±0.15 °C (±0.3°F), temperature stability of ±0.05°C (±0.1°F), and uniformity of ±0.15 °C (±0.3 °F) over a central 1.5 × 1.5 in. region of interest.

“We are excited to announce the development of these new thermal sources for use in human fever-detection systems to help fight the spread of COVID-19,” says SBIR president Steve McHugh. He notes that SBIR was able to take advantage of its core technology of military and scientific blackbody sources to create a low-cost, thermal reference that can be produced quickly in high volumes.

For more information, see https://sbir.com/btr-body-temperature-reference-source-nightingale/

Source: Santa Barbara Infrared

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

From Life Sciences to Industry: Advancements in Optical Filters

Aug. 1, 2024
Optical filters are increasingly used in VR, advanced medical imaging, environmental monitoring, and satellite communications. This whitepaper highlights Chroma’s technical advancements...

Optical Filters for Semiconductor Inspection

Aug. 1, 2024
At Chroma Technology, we understand that the quality of your optical filters directly impacts the accuracy of your inspection processes and ultimately, the performance of your...

Optical Filters for Astronomy Applications

Aug. 1, 2024
At Chroma we manufacture the highest quality, narrow-band spectral line filters for astronomy. Our narrow passbands provide the precision and accuracy to ensure your spectral ...

Chroma is a leading manufacturer of highly precise optical filters

Aug. 1, 2024
Chroma is known for exceptional customer service and technical support. They produce durable, high-performance optical filters with a spectral range of 200-3000nm, serving diverse...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!