Relativistic time dilation could help ultrafast analysis of molecular reactions

April 21, 2021
Accelerating a small chemical specimen to relativistic speeds slows down its “internal clock,” enabling higher temporal resolution for ultrafast studies.

Ultrafast studies of chemical reactions and other molecular dynamics typically rely on the use of femtosecond and, more recently, attosecond light sources to probe the reaction. For example, a short laser pump pulse can first be used to trigger a light-induced reaction in a molecular sample, with a probe pulse following to characterize the results. Now, two researchers at the University of Toronto (Toronto, ON, Canada), Hazem Daoud and R. J. Dwayne Miller, propose a different and quite radical approach: accelerate the sample specimen itself to relativistic speed to slow its internal clock down, enabling finer-grained temporal measurement to be made. To a nonmoving observer, the “internal clock” of a sample moving at velocity v slows down by a factor of (1 - v2/c2)1/2, where c is the velocity of light; thus, the time resolution of an experiment can be a function of the sample’s energy.

The researchers say that small samples could be accelerated in a cyclotron or synchrotron and then be studied at a fixed energy, with a pump light pulse and probe light pulse directed parallel to each other and perpendicular to the specimen’s direction of motion. For example, the Large Hadron Collider at CERN can accelerate lead ions to a collision energy of 5 TeV. The researchers say that a hydronium molecule (H3O+), for example, when accelerated to 1.8 TeV, would be slowed down in time by a factor of 100, thus increasing time resolution by a factor of 100; when accelerated to 18 TeV, the increase in time resolution would be 1000-fold. Reference: H. Daoud and R. J. Dwayne Miller, J. Chem. Phys. (2021); https://doi.org/10.1063/5.0037862.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

How to Tune Servo Systems: Force Control

Oct. 23, 2024
Tuning the servo system to meet or exceed the performance specification can be a troubling task, join our webinar to learn to optimize performance.

Laser Machining: Dynamic Error Reduction via Galvo Compensation

Oct. 23, 2024
A common misconception is that high throughput implies higher speeds, but the real factor that impacts throughput is higher accelerations. Read more here!

Boost Productivity and Process Quality in High-Performance Laser Processing

Oct. 23, 2024
Read a discussion about developments in high-dynamic laser processing that improve process throughput and part quality.

Precision Automation Technologies that Minimize Laser Cut Hypotube Manufacturing Risk

Oct. 23, 2024
In this webinar, you will discover the precision automation technologies essential for manufacturing high-quality laser-cut hypotubes. Learn key processes, techniques, and best...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!