Smartphone-based Raman spectrometer is cost-effectively convenient

Sept. 20, 2024
From texting and navigation to banking and video streaming, smartphones are among the most multifaceted technologies ever developed. And now, chemical detection has joined its list of uses.

Researchers at Texas A&M University (College Station, TX) took a significant step toward making advanced scientific tools more widely accessible by developing a smartphone-based Raman spectrometer system to detect and analyze chemicals, drugs, and other biological molecules and pathogens—invisible to the naked eye—by recording their Raman spectra (see video).

The portable setup is a less expensive alternative to conventional Raman spectroscopy systems, says Peter Rentzepis, a professor in the Department of Electrical and Computer Engineering at Texas A&M. He invented the system alongside former graduate students Dr. Dinesh Dhankhar, a system engineer at Thermo Fisher Scientific, and Anushka Nagpal, a process engineer at Intel Corp.; they now hold a patent for it.

“In Raman spectroscopy, a sample is irradiated with a laser light, which then emits Raman scattering that can be recorded and analyzed to identify the molecules’ composition,” Rentzepis explains. “But traditional Raman spectrometers are large, expensive, and primarily confined to laboratory use, and they require complex optics and high power. Our system was developed to use the advanced camera technology in modern smartphones, making Raman spectroscopy more compact, widely accessible, and cost-effective.”

How it works

Along with the smartphone camera technology, the setup incorporates lenses, a diode laser, and a diffraction grating to record the Raman spectrum. By placing a smartphone behind and facing the transmission grating, the laser shoots a beam into a sample of unknown material, such as bacteria, and the camera then records the spectrum. The system uses right-angle geometry, as well, to reduce noise and interference from Rayleigh scattering.

Peaks in the spectrum provide detailed data about a substance’s chemical composition and its molecular structure. The spectrometer system enables noninvasive detection and identification of potentially harmful chemicals or materials in the field, particularly in remote areas.

“Its portability makes it ideal for rapid, real-time detection in the field, where traditional laboratory equipment is not accessible,” Rentzepis says.

The technology is well suited for applications that require quick, onsite identification of substances, Rentzepis adds. This includes detecting contaminants in food, identifying drugs and chemicals, and analyzing biological samples such as bacteria or pigments—without sending samples to a laboratory.

What’s next?

While the system is already proving effective and accurate, there are challenges the researchers are working to overcome, Rentzepis points out. Most notably, the limited dynamic range of smartphone cameras and the need for further refinement in spectral resolution and noise reduction.

“The next steps for this technology involve further miniaturization, improving sensitivity and resolution, developing analysis software, and testing on more diverse and complex samples,” Rentzepis says.

The ultimate goal is to integrate this spectrometer system into future smartphones, making Raman spectroscopy a standard feature that can be used by anyone, anywhere, for a wide range of applications, from detecting pathogens in medical settings to identifying hazardous substances in situ in the environment. It also shows potential for use in forensics and consumer safety applications.

“This technology represents a significant step toward making advanced scientific tools accessible to the general public,” Rentzepis says. “This could make sophisticated analytical tools widely accessible, enabling more widespread and immediate in situ detection of substances in everyday life.”

About the Author

Justine Murphy | Multimedia Director, Digital Infrastructure

Justine Murphy is the multimedia director for Endeavor Business Media's Digital Infrastructure Group. She is a multiple award-winning writer and editor with more 20 years of experience in newspaper publishing as well as public relations, marketing, and communications. For nearly 10 years, she has covered all facets of the optics and photonics industry as an editor, writer, web news anchor, and podcast host for an internationally reaching magazine publishing company. Her work has earned accolades from the New England Press Association as well as the SIIA/Jesse H. Neal Awards. She received a B.A. from the Massachusetts College of Liberal Arts.

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Steering Light: What is the Difference Between 2-Axis Galvo Scanners and Single Mirror 2-Axis Scanners

Dec. 18, 2024
Advantages and limitations of different 2-axis light steering methods: Piezo steering mirrors, voice-coil mirrors, galvos, gimbal mounts, and kinematic mounts.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!