Viscosity-mismatched fluid waveguide aimed at biomedical research

June 1, 2006
Using carefully tailored fluid flow, researchers at the Colorado School of Mines are creating all-fluid optical waveguides (contained on a solid substrate) composed of two liquids with mismatched viscosity.

Using carefully tailored fluid flow, researchers at the Colorado School of Mines are creating all-fluid optical waveguides (contained on a solid substrate) composed of two liquids with mismatched viscosity. The waveguides are potentially useful in dynamically switched microfluidic-based analytical systems for biomedical research. The more-viscous core, a 67%-by-weight sucrose/water solution, has a refractive index of 1.457, while the pure-water cladding has an index of 1.33. Two flows of cladding squeeze the central core to provide a taper that ends in a core width of about 15 µm.

The core/cladding boundary is smooth due to laminar flow. Over the length of the waveguide, the boundary becomes graded because of diffusion-a phenomenon that can be tailored based on flow such that step-index, graded-index, multimode, or single-mode waveguides are possible. The researchers demonstrated fluorescence detection and emission collection in a fluid waveguide that carried fluorescent colloids in its core, which was pumped with 632 nm light (the waveguide flowed up against and was diverted by a transparent wall, through which the emission was detected). Contact David Marr at [email protected].

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

White Paper: Improving Photonic Alignment

Dec. 18, 2024
Discover how PI's FMPA Photonic Alignment Technology revolutionized the photonics industry, enabling faster and more economical testing at the wafer level. By reducing alignment...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!