Two groups create electrically injected InP hybrid lasers on silicon

Oct. 1, 2006
Two research groups have reported independent approaches to the fabrication of the first electrically injected indium phosphide (InP)-based diode lasers on silicon.

Two research groups have reported independent approaches to the fabrication of the first electrically injected indium phosphide (InP)-based diode lasers on silicon. Such lasers, if practical, would help to usher in low-cost but extremely rapid data transmission. In both approaches, the light from the lasers was coupled into silicon-on-insulator (SOI) waveguides on silicon chips. In the method developed by a group from Intel (Santa Clara, CA) and the University of California-Santa Barbara (Santa Barbara, CA), an oxide layer a few nanometers thick is created on the InP component, which is heated and pressed against the SOI, bonding them. The silicon serves as the continuous-wave laser cavity, which is 800 µm long. The technology should make data-transmission speeds of 20 to 40 Gbit/s over distances of tens of feet possible, says Intel. Contact Barbara Bronson Gray at [email protected].

In the approach taken by researchers at Ghent University (Ghent, Belgium) and the Technical University Eindhoven (Eindhoven, The Netherlands), an InP-based laser structure is bonded to SOI with an adhesive called DVS-BCB. A polymer waveguide adiabatically couples 0.9 mW of 1550 nm laser light (via tapering) into an SOI waveguide. In this setup, the laser (if made shorter) can be used as a photodetector with a responsivity of 0.23 A/W. Contact Gunther Roelkens at [email protected].

Sponsored Recommendations

How to Tune Servo Systems: Force Control

Oct. 23, 2024
Tuning the servo system to meet or exceed the performance specification can be a troubling task, join our webinar to learn to optimize performance.

Laser Machining: Dynamic Error Reduction via Galvo Compensation

Oct. 23, 2024
A common misconception is that high throughput implies higher speeds, but the real factor that impacts throughput is higher accelerations. Read more here!

Boost Productivity and Process Quality in High-Performance Laser Processing

Oct. 23, 2024
Read a discussion about developments in high-dynamic laser processing that improve process throughput and part quality.

Precision Automation Technologies that Minimize Laser Cut Hypotube Manufacturing Risk

Oct. 23, 2024
In this webinar, you will discover the precision automation technologies essential for manufacturing high-quality laser-cut hypotubes. Learn key processes, techniques, and best...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!