Two groups create electrically injected InP hybrid lasers on silicon

Oct. 1, 2006
Two research groups have reported independent approaches to the fabrication of the first electrically injected indium phosphide (InP)-based diode lasers on silicon.

Two research groups have reported independent approaches to the fabrication of the first electrically injected indium phosphide (InP)-based diode lasers on silicon. Such lasers, if practical, would help to usher in low-cost but extremely rapid data transmission. In both approaches, the light from the lasers was coupled into silicon-on-insulator (SOI) waveguides on silicon chips. In the method developed by a group from Intel (Santa Clara, CA) and the University of California-Santa Barbara (Santa Barbara, CA), an oxide layer a few nanometers thick is created on the InP component, which is heated and pressed against the SOI, bonding them. The silicon serves as the continuous-wave laser cavity, which is 800 µm long. The technology should make data-transmission speeds of 20 to 40 Gbit/s over distances of tens of feet possible, says Intel. Contact Barbara Bronson Gray at [email protected].

In the approach taken by researchers at Ghent University (Ghent, Belgium) and the Technical University Eindhoven (Eindhoven, The Netherlands), an InP-based laser structure is bonded to SOI with an adhesive called DVS-BCB. A polymer waveguide adiabatically couples 0.9 mW of 1550 nm laser light (via tapering) into an SOI waveguide. In this setup, the laser (if made shorter) can be used as a photodetector with a responsivity of 0.23 A/W. Contact Gunther Roelkens at [email protected].

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Steering Light: What is the Difference Between 2-Axis Galvo Scanners and Single Mirror 2-Axis Scanners

Dec. 18, 2024
Advantages and limitations of different 2-axis light steering methods: Piezo steering mirrors, voice-coil mirrors, galvos, gimbal mounts, and kinematic mounts.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!