Angle-scanning an etalon precisely measures its thickness variation

Feb. 1, 2006
Used in imaging solar spectroscopy, tunable Fabry-Perot interferometers made from lithium niobate wafers must have thickness variations of no more than 1 nm rms (root mean square) across their rather large working apertures (tens of millimeters in diameter).

Used in imaging solar spectroscopy, tunable Fabry-Perot interferometers made from lithium niobate wafers must have thickness variations of no more than 1 nm rms (root mean square) across their rather large working apertures (tens of millimeters in diameter). Measuring these small variations is difficult, but a group of researchers at CSIRO Industrial Physics (Lindfield, Australia) has come up with a simple approach that involves rotating the etalon in a collimated, frequency-stabilized He-Ne laser beam and measuring the transmission versus angle.

In a standard laboratory environment, a test etalon with a 37.5-mm clear aperture was rotated on a precise stage with a 0.00008° angular resolution and the transmitted light captured by a digital video camera. The angle of maximum etalon transmission was found for each camera pixel and the data used to determine optical etalon thickness (relative to other pixels) at that point; physical thickness was then easily derived. To check, measurements were taken at different angular wafer orientations and on different days. Measurement repeatability was 0.07 nm rms or better and reproducibility 0.16 nm rms or better; absolute thickness variations were on the order of 1.3 nm. Contact John Arkwright at [email protected].

Correction

In “Gallium nitride has low loss at 1550 nm” (Newsbreaks, December 2005, p. 11) we neglected to note that the work was a joint effort by Lucent Technologies’ Bell Labs and Samsung Advanced Institute of Technology.

Sponsored Recommendations

Optical Filter Orientation Guide

Sept. 5, 2024
Ensure optimal performance of your optical filters with our Orientation Guide. Learn the correct placement and handling techniques to maximize light transmission and filter efficiency...

Advanced Spectral Accuracy: Excitation Filters

Sept. 5, 2024
Enhance your fluorescence experiments with our Excitation Filters. These filters offer superior transmission and spectral accuracy, making them ideal for exciting specific fluorophores...

Raman Filter Sets for Accurate Spectral Data

Sept. 5, 2024
Enhance your Raman spectroscopy with our specialized Raman Filter Sets. Designed for high precision, these filters enable clear separation of Raman signals from laser excitation...

Precision-Engineered Longpass Filters

Sept. 5, 2024
Discover our precision-engineered Longpass Filters, designed for high transmission and optimal wavelength separation. Perfect for fluorescence imaging, microscopy, and more.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!