Electrically stimulated carbon nanotubes emit IR light

Jan. 1, 2006
Researchers from IBM (Yorktown Heights, NY) and Duke University (Durham, NC) have produced bright IR electroluminescence at local electric fields in the junction between suspended and supported parts of a partially suspended single-carbon-nanotube field-effect transistor in unipolar operation.

Researchers from IBM (Yorktown Heights, NY) and Duke University (Durham, NC) have produced bright IR electroluminescence at local electric fields in the junction between suspended and supported parts of a partially suspended single-carbon-nanotube field-effect transistor in unipolar operation. Unlike light-emitting diodes or ambipolar carbon-nanotube field-effect transistors, in which electrons and holes are injected from source and drain electrodes separately, the unipolar device in the IBM-Duke experiment generated carriers locally when either electrons or holes were accelerated by electrical forces great enough to create strongly correlated electron-hole pairs.

Click here to enlarge image

The local unipolar mechanism led to a two- to three-orders-of-magnitude increase in electroluminescent efficiency over light emission by ambipolar carbon-nanotube field-effect transistors. The researchers attributed the effect to weak electron-phonon scattering and strong electron-hole binding caused by 1-D confinement. The combination of extraordinary current carrying and ultrasmall size in the carbon nanotube led to an ultrabright light source; the high excitation density allowed the researchers to observe emission from highly excited states that were not observable through photo-excitation. Contact Phaedon Avouris at [email protected].

Sponsored Recommendations

Precision Motion Control for Photonics: 5 Keys to Success

Aug. 30, 2024
Precision motion control is a key element in the development and production of silicon-photonic devices. Yet, when nanometers matter, it can be challenging to evaluate and implement...

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

Aug. 30, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Motion Control Technologies for Medical Device Joining Applications

Aug. 30, 2024
Automated laser welding is beneficial in medical device manufacturing due to its precision, cleanliness, and efficiency. When properly optimized, it allows OEMs to achieve extremely...

How to Maximize Machine Building Performance with High-Performance Laser Processing

Aug. 30, 2024
Learn how an automotive high-speed laser blanking machine manufacturer builds machines that maximize throughput for faster processing speeds and improved productivity.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!