Transient plasma mirror/filter manipulates high-energy laser pulses

Sept. 14, 2016
The scientific community invests tremendous effort in developing optical components such as lenses, mirrors, gratings, coatings, optical fibers, and even specialized photonic crystals that can withstand and manipulate high-energy laser pulses.
Content Dam Lfw Print Articles 2016 09 1609lfw Nb F1

The scientific community invests tremendous effort in developing optical components such as lenses, mirrors, gratings, coatings, optical fibers, and even specialized photonic crystals that can withstand and manipulate high-energy laser pulses. But researchers at Heinrich-Heine-Universität Düsseldorf (Germany) have now used counterpropagating laser pulses to generate transient plasma structures that can act as photonic-crystal cavities to manipulate high-energy laser pulses in ways that no solid optical materials can.

Rather than constructing a conventional photonic crystal through layers of dielectrics or metals, the researchers used oppositely propagating laser beams to generate a transient plasma photonic crystal (TPPC) by creating arrays of periodic microplasmas. This density grating has a specific bandgap as dictated by Maxwell-Vlasov simulations that affects the mode profile of laser light entering the TPPC just as if the laser were entering a physical mirror or filter structure. Unlike typical silica optical components that have laser-damage thresholds on the order of 10 J/cm2 for femtosecond to picosecond pulse durations, the TPPC structures can handle fluence values more than five orders of magnitude larger. Reference: G. Lehmann and K. H. Spatschek, Phys. Rev. Lett., 116, 22, 225002 (Jun. 3, 2016).

About the Author

Gail Overton | Senior Editor (2004-2020)

Gail has more than 30 years of engineering, marketing, product management, and editorial experience in the photonics and optical communications industry. Before joining the staff at Laser Focus World in 2004, she held many product management and product marketing roles in the fiber-optics industry, most notably at Hughes (El Segundo, CA), GTE Labs (Waltham, MA), Corning (Corning, NY), Photon Kinetics (Beaverton, OR), and Newport Corporation (Irvine, CA). During her marketing career, Gail published articles in WDM Solutions and Sensors magazine and traveled internationally to conduct product and sales training. Gail received her BS degree in physics, with an emphasis in optics, from San Diego State University in San Diego, CA in May 1986.

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!