Photoconductive antennas generate tunable narrowband terahertz pulses

Oct. 1, 2011
Tunable narrowband terahertz pulses in the range of 0.3 to 2.4 THz were created via difference frequency generation using a photoconductive antenna (PCA) design developed by researchers at the Helmholtz-Zentrum Dresden Rossendorf.

Tunable narrowband terahertz pulses in the range of 0.3 to 2.4 THz were created via difference frequency generation using a photoconductive antenna (PCA) design developed by researchers at the Helmholtz-Zentrum Dresden Rossendorf (Dresden, Germany). The narrowest pulses (0.2 THz at a 1 THz central frequency) were generated at an efficiency of 5 × 10-4; pulses with a 0.36 THz bandwidth were generated at an efficiency of 1 × 10-3. Antennas based on low-temperature-grown gallium arsenide (LT-GaAs) as well as on semi-insulating GaAs (SI-GaAs) were demonstrated; the latter devices, although lower in power by a factor of four, use a type of GaAs that is inexpensive and easily available.

A regenerative titanium:sapphire laser amplifier with an 8 µJ pulse energy, a repetition rate of 250 kHz, a pulse duration of 35 fs, and a center wavelength of 800 nm served as the ultrafast source. The pulses were stretched and divided into two pulses: one to create the terahertz radiation and the other to analyze it via electro-optic sampling. The generated terahertz light was collected with a gold parabolic mirror and combined with the probe pulse in a zinc telluride crystal. The PCAs had interdigitated-finger structures with 5 µm gap spacings; the SI-GaAs device was 10 mm square, while the LT-GaAs device was 1 mm square. The researchers believe that the reasonably good results with SI-GaAs occurred because the device’s higher mobility counters the long recovery time.

Contact Dominik Stehr at [email protected].

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

March 31, 2025
Enhance your remote sensing capabilities with Chroma's precision-engineered optical filters, designed for applications such as environmental monitoring, geospatial mapping, and...
March 31, 2025
Designed for compatibility with a wide range of systems, Chroma's UV filters are engineered to feature high transmission, superior out-of-band blocking, steep edge transitions...
March 31, 2025
Discover strategies to balance component performance and system design, reducing development time and costs while maximizing efficiency.
March 31, 2025
Explore the essential role of optical filters in enhancing Raman spectroscopy measurements including the various filter types and their applications in improving signal-to-noise...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!