Time-reversal of light could improve focusing and imaging in scattering media

July 3, 2012
University of Twente, FOM Institute of Atomic and Molecular Physics, and Langevin Institute at École Supérieure de Physique et de Chimie de la Ville de Paris researchers are developing new techniques to improve imaging and focusing in scattering media.

University of Twente (Enschede, the Netherlands), FOM Institute of Atomic and Molecular Physics (Amsterdam, the Netherlands), and Langevin Institute at École Supérieure de Physique et de Chimie de la Ville de Paris (Paris, France) researchers are developing new techniques to improve imaging and focusing in scattering media. A wave (sound or light) emanating from a point source in a scattering medium will spread and develop a speckle pattern due to interference of different scattering pathways. The time reverse—a speckled wave converging toward a point and becoming a single bright spot—is also possible due to reciprocity. In ultrasound such a wave can be created by electronically recording the outgoing wave and playing it backward, a method that is not possible in optics. However, for light it is possible to directly create a wave that converges to a focus by shaping the incident wavefront using spatial light modulators. In this case, feedback from a detector at the target point is used to shape the wavefront properly.

In the past few months, the researchers say that groups worldwide have demonstrated many of the extraordinary possibilities of wavefront-shaped light, including focusing and imaging in and through turbid media, pulse compression, and spectral selection. Remarkably, both in ultrasound and light the focus obtained through a scattering medium can in some situations be much smaller than a focus made without scattering, an effect that is being exploited for microscopy. Contact Allard P. Mosk at [email protected].

About the Author

Gail Overton | Senior Editor (2004-2020)

Gail has more than 30 years of engineering, marketing, product management, and editorial experience in the photonics and optical communications industry. Before joining the staff at Laser Focus World in 2004, she held many product management and product marketing roles in the fiber-optics industry, most notably at Hughes (El Segundo, CA), GTE Labs (Waltham, MA), Corning (Corning, NY), Photon Kinetics (Beaverton, OR), and Newport Corporation (Irvine, CA). During her marketing career, Gail published articles in WDM Solutions and Sensors magazine and traveled internationally to conduct product and sales training. Gail received her BS degree in physics, with an emphasis in optics, from San Diego State University in San Diego, CA in May 1986.

Sponsored Recommendations

March 31, 2025
Enhance your remote sensing capabilities with Chroma's precision-engineered optical filters, designed for applications such as environmental monitoring, geospatial mapping, and...
March 31, 2025
Designed for compatibility with a wide range of systems, Chroma's UV filters are engineered to feature high transmission, superior out-of-band blocking, steep edge transitions...
March 31, 2025
Discover strategies to balance component performance and system design, reducing development time and costs while maximizing efficiency.
March 31, 2025
Explore the essential role of optical filters in enhancing Raman spectroscopy measurements including the various filter types and their applications in improving signal-to-noise...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!