Engineered nonlinear material produces low-loss mid-infrared source

May 1, 1997
Researchers at the Center for Nonlinear Optical Materials (Stanford University; Palo Alto, CA) have reduced the optical loss of a quasi-phase-matched, diffusion-bonded stack of gallium arsenide (GaAs) plates to that of single-crystal GaAs. The stack consisted of 24 alternately rotated GaAs layers with an average layer thickness of 252 µm. The total length of the stack was 6 mm. The layers were fused in a bonding furnace.

Engineered nonlinear material produces low-loss mid-infrared source

Researchers at the Center for Nonlinear Optical Materials (Stanford University; Palo Alto, CA) have reduced the optical loss of a quasi-phase-matched, diffusion-bonded stack of gallium arsenide (GaAs) plates to that of single-crystal GaAs. The stack consisted of 24 alternately rotated GaAs layers with an average layer thickness of 252 µm. The total length of the stack was 6 mm. The layers were fused in a bonding furnace.

The completed third-order quasi-phase-matching device was tested in a laser at the Blackett Laboratory (Imperial College; London, England) consisting of a double-pass zinc germanium phosphide (ZnGeP2) optical parametric generator pumped by a 2.8-µm erbium chromium-doped YSGG laser. The resulting 4.79- and 6.74-µm output in 96-ps pulses produced tunable 15.6- to 17.6-µm radiation after difference-frequency mixing in the GaAs stack. The peak external conversion efficiency was 0.7%, which corresponded to 5% internal quantum conversion efficiency at 16.6 µm. In the tunable wavelength range, the optical loss coefficient of the bonded stack was almost the same as single-crystal GaAs, according to the researchers. The team says that the use of engineered nonlinear optical materials shows promise for developing tunable infrared sources.

Sponsored Recommendations

Demonstrating Flexible, Powerful 5-axis Laser Micromachining

Sept. 18, 2024
Five-axis scan heads offer fast and flexible solutions for generating precise holes, contoured slots and other geometries with fully defined cross sections. With a suitable system...

Enhance Your Experiments with Chroma's Spectra Viewer

Sept. 5, 2024
Visualize and compare fluorescence spectra with our interactive Spectra Viewer tool. Easily compare and optimize filters and fluorochromes for your experiments with this intuitive...

Optical Filter Orientation Guide

Sept. 5, 2024
Ensure optimal performance of your optical filters with our Orientation Guide. Learn the correct placement and handling techniques to maximize light transmission and filter efficiency...

Ensure Optimal Performance with Shortpass Filters

Sept. 5, 2024
Achieve precise wavelength blocking with our Shortpass Filters. Ideal for applications requiring effective light transmission and cutoff, these filters ensure optimal performance...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!