Two research groups build tiny plasmon lasers

Oct. 1, 2009
Just after researchers at Norfolk State University (Norfolk, VA), Purdue University (Purdue, IN), and Cornell University (Ithaca, NY) announced a tiny laser fabricated from a 44-nm-diameter “Cornell dot” with a gold core and dye-doped silica shell, researchers at the University of California at Berkeley (Berkeley, CA) announced a laser with a 5 × 30 nm lasing region.

Just after researchers at Norfolk State University (Norfolk, VA), Purdue University (Purdue, IN), and Cornell University (Ithaca, NY) announced a tiny laser fabricated from a 44-nm-diameter “Cornell dot” with a gold core and dye-doped silica shell, researchers at the University of California at Berkeley (Berkeley, CA) announced a laser with a 5 × 30 nm lasing region.

The Cornell dot laser works by using a pump laser to excite dye molecules. The molecules release energy to generate surface plasmons—free electrons at an optical frequency—that in turn trigger more molecules to release their energy to create a spaser (surface plasmon amplification by stimulated emission of radiation). Out-coupling of the surface plasmon oscillation to photonic modes produces photon emission at 531 nm corresponding to resonance in the 14-nm-diameter gold core. Contact Mikhail Noginov at [email protected].

Click here to enlarge image

Like the Cornell laser, the Berkeley laser also depends on surface plasmons. However, lasing occurs in a structure consisting of a cadmium sulfide nanowire with a silver surface separated by an insulating gap of only 5 nm. The nanowire acts as both a confining mechanism and an amplifier; when pumped at 405 nm, emission is observed at 489 nm (see figure). The researchers eventually hope to shrink the lasing cavity to 1 nm (the wavelength of an electron), opening up new applications in molecular probing, faster communications, and quantum computing. Contact Xiang Zhang at [email protected].

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Steering Light: What is the Difference Between 2-Axis Galvo Scanners and Single Mirror 2-Axis Scanners

Dec. 18, 2024
Advantages and limitations of different 2-axis light steering methods: Piezo steering mirrors, voice-coil mirrors, galvos, gimbal mounts, and kinematic mounts.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!