Two research groups build tiny plasmon lasers

Oct. 1, 2009
Just after researchers at Norfolk State University (Norfolk, VA), Purdue University (Purdue, IN), and Cornell University (Ithaca, NY) announced a tiny laser fabricated from a 44-nm-diameter “Cornell dot” with a gold core and dye-doped silica shell, researchers at the University of California at Berkeley (Berkeley, CA) announced a laser with a 5 × 30 nm lasing region.

Just after researchers at Norfolk State University (Norfolk, VA), Purdue University (Purdue, IN), and Cornell University (Ithaca, NY) announced a tiny laser fabricated from a 44-nm-diameter “Cornell dot” with a gold core and dye-doped silica shell, researchers at the University of California at Berkeley (Berkeley, CA) announced a laser with a 5 × 30 nm lasing region.

The Cornell dot laser works by using a pump laser to excite dye molecules. The molecules release energy to generate surface plasmons—free electrons at an optical frequency—that in turn trigger more molecules to release their energy to create a spaser (surface plasmon amplification by stimulated emission of radiation). Out-coupling of the surface plasmon oscillation to photonic modes produces photon emission at 531 nm corresponding to resonance in the 14-nm-diameter gold core. Contact Mikhail Noginov at [email protected].

Click here to enlarge image

Like the Cornell laser, the Berkeley laser also depends on surface plasmons. However, lasing occurs in a structure consisting of a cadmium sulfide nanowire with a silver surface separated by an insulating gap of only 5 nm. The nanowire acts as both a confining mechanism and an amplifier; when pumped at 405 nm, emission is observed at 489 nm (see figure). The researchers eventually hope to shrink the lasing cavity to 1 nm (the wavelength of an electron), opening up new applications in molecular probing, faster communications, and quantum computing. Contact Xiang Zhang at [email protected].

Sponsored Recommendations

March 31, 2025
Enhance your remote sensing capabilities with Chroma's precision-engineered optical filters, designed for applications such as environmental monitoring, geospatial mapping, and...
March 31, 2025
Designed for compatibility with a wide range of systems, Chroma's UV filters are engineered to feature high transmission, superior out-of-band blocking, steep edge transitions...
March 31, 2025
Discover strategies to balance component performance and system design, reducing development time and costs while maximizing efficiency.
March 31, 2025
Explore the essential role of optical filters in enhancing Raman spectroscopy measurements including the various filter types and their applications in improving signal-to-noise...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!