Double helix-PSF enables superresolution 3-D imaging

March 1, 2009
Researchers at Stanford University (Palo Alto, CA) and the University of Colorado at Boulder have demonstrated for the first time a method for 3-D optical imaging of objects smaller than 20 nm over a wide spatial range–overcoming the optical diffraction limit by an order of magnitude.

Researchers at Stanford University (Palo Alto, CA) and the University of Colorado at Boulder have demonstrated for the first time a method for 3-D optical imaging of objects smaller than 20 nm over a wide spatial range–overcoming the optical diffraction limit by an order of magnitude. Their approach uses single fluorescent molecules and a wide-field microscope. The researchers engineered the microscope’s point-spread function (PSF) to have two points of light in the image plane. Because the angle of the line between the spots changes depending on the axial position of the molecule, the PSF appears as a double-helix along the z axis of the microscope–which is why the researchers term it the double-helix PSF (DH-PSF).

Click here to enlarge image

The researchers report they are able to localize single fluorescent molecules within 10 to 20 nm over a large depth of field (2 µm) in a thick polymer sample. They accomplish this by finding the orientation and center of the two DH-PSF spots using a fluorophore. Repeated 500 ms acquisition of sparse subsets enable superresolution imaging of high concentrations of single molecules in all three dimensions. The technique holds promise for improving 3-D imaging even further, the researchers say, and is applicable to materials science as well as biological and biomedical studies. Contact Rafael Piestun at [email protected].

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

White Paper: Improving Photonic Alignment

Dec. 18, 2024
Discover how PI's FMPA Photonic Alignment Technology revolutionized the photonics industry, enabling faster and more economical testing at the wafer level. By reducing alignment...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!