Double helix-PSF enables superresolution 3-D imaging

March 1, 2009
Researchers at Stanford University (Palo Alto, CA) and the University of Colorado at Boulder have demonstrated for the first time a method for 3-D optical imaging of objects smaller than 20 nm over a wide spatial range–overcoming the optical diffraction limit by an order of magnitude.

Researchers at Stanford University (Palo Alto, CA) and the University of Colorado at Boulder have demonstrated for the first time a method for 3-D optical imaging of objects smaller than 20 nm over a wide spatial range–overcoming the optical diffraction limit by an order of magnitude. Their approach uses single fluorescent molecules and a wide-field microscope. The researchers engineered the microscope’s point-spread function (PSF) to have two points of light in the image plane. Because the angle of the line between the spots changes depending on the axial position of the molecule, the PSF appears as a double-helix along the z axis of the microscope–which is why the researchers term it the double-helix PSF (DH-PSF).

Click here to enlarge image

The researchers report they are able to localize single fluorescent molecules within 10 to 20 nm over a large depth of field (2 µm) in a thick polymer sample. They accomplish this by finding the orientation and center of the two DH-PSF spots using a fluorophore. Repeated 500 ms acquisition of sparse subsets enable superresolution imaging of high concentrations of single molecules in all three dimensions. The technique holds promise for improving 3-D imaging even further, the researchers say, and is applicable to materials science as well as biological and biomedical studies. Contact Rafael Piestun at [email protected].

Sponsored Recommendations

Demonstrating Flexible, Powerful 5-axis Laser Micromachining

Sept. 18, 2024
Five-axis scan heads offer fast and flexible solutions for generating precise holes, contoured slots and other geometries with fully defined cross sections. With a suitable system...

Enhance Your Experiments with Chroma's Spectra Viewer

Sept. 5, 2024
Visualize and compare fluorescence spectra with our interactive Spectra Viewer tool. Easily compare and optimize filters and fluorochromes for your experiments with this intuitive...

Optical Filter Orientation Guide

Sept. 5, 2024
Ensure optimal performance of your optical filters with our Orientation Guide. Learn the correct placement and handling techniques to maximize light transmission and filter efficiency...

Ensure Optimal Performance with Shortpass Filters

Sept. 5, 2024
Achieve precise wavelength blocking with our Shortpass Filters. Ideal for applications requiring effective light transmission and cutoff, these filters ensure optimal performance...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!