Lasers break new ground

March 1, 2009
There have been some remarkable developments in a number of laser technologies recently–something for everyone, in fact!

There have been some remarkable developments in a number of laser technologies recently–something for everyone, in fact! At the “awesomely high” end of the power spectrum, the Texas Petawatt laser at the University of Texas at Austin–based on a hybrid chirped-pulse-amplifier system–achieved a peak output power of 1.1 petawatts and the researchers say the technology involved could provide a foundation for efforts to develop an exawatt-class laser (see cover and page 17). And as the 192-beamline National Ignition Facility at Lawrence Livermore National Laboratory moves toward “breakeven”–creating as much fusion-energy output as laser-energy input–its creators are already working on its baby cousin, a much more efficient diode-pumped system with a single beamline intended to lead the way to commercial laser fusion (see page 51).

Away from awesome and far to the other end of the power spectrum, Photonics West in January showcased some great new commercial lasers. A “high-power” quantum-cascade device capable of delivering 2 W at 4.6 µm is aimed at IR applications including countermeasures and free-space communications; an industrial fiber-coupled diode system that emits 1 kW at 975 nm is intended for heat treating, cladding, and welding; and a new diode-laser module capable of delivering 100 W with a wall-plug efficiency of up to 40% will become the building block of a mulitkilowatt system for direct-diode materials processing (see page 33). And by the way, high-power diode lasers were the subject of contributing editor Jeff Hecht’s popular recent Webcast, broadcast on Feb. 18 (see www.laserfocusworld.com).

Elsewhere, a team of researchers led by Claire Gmachl of Princeton University (Princeton, NJ) discovered an unexpected transition in a quantum-cascade laser structure and now has a device able to lase simultaneously at two wavelengths: 9.5 and 8.2 µm–a development that should benefit spectroscopic laser systems, according to Gmachl (see page 27). In a similar vein, a research group at Arizona State University has developed a widely tunable semiconductor laser–a nanowire chip of changing composition on a single substrate produced a device with a record 200 nm tuning range in the visible (see www.laserfocusworld.com/articles/353540).

About the Author

Stephen G. Anderson | Director, Industry Development - SPIE

 Stephen Anderson is a photonics industry expert with an international background and has been actively involved with lasers and photonics for more than 30 years. As Director, Industry Development at SPIE – The international society for optics and photonics – he is responsible for tracking the photonics industry markets and technology to help define long-term strategy, while also facilitating development of SPIE’s industry activities. Before joining SPIE, Anderson was Associate Publisher and Editor in Chief of Laser Focus World and chaired the Lasers & Photonics Marketplace Seminar. Anderson also co-founded the BioOptics World brand. Anderson holds a chemistry degree from the University of York and an Executive MBA from Golden Gate University.    

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

White Paper: Improving Photonic Alignment

Dec. 18, 2024
Discover how PI's FMPA Photonic Alignment Technology revolutionized the photonics industry, enabling faster and more economical testing at the wafer level. By reducing alignment...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!