Tissue Engineering: 3D laser printing of live human cells promising for testing, transplantation

June 1, 2015
A laser forward transfer method for printing living cells provides resolution and cell densities sufficient for tissue formation.

Researchers in Germany have adapted a laser forward transfer method for printing living cells. The approach provides resolution and cell densities sufficient for tissue formation. The technique has been shown to enable production of 3D cell constructs using live human cells, which could obsolete animal testing of chemicals, pharmaceuticals, and cosmetics. Ultimately, it could also allow the manufacture of complete functional replacement organs for transplantation.

Boris Chichkov, Urs Zywietz, and Lothar Koch of Laser Zentrum Hannover e.V. coat a glass slide or transparent ribbon with one layer each of a laser-absorbing material and a biomaterial—typically a hydrogel with embedded cells (see Fig. 1). With the glass slide mounted upside down, they direct 10 ns pulses of 1064 nm laser light through the slide into the absorption layer, which evaporates in the focal spot. The vapor pressure propels the subjacent biomaterial forward and deposits it as a droplet onto a surface under the slide. By moving the slide and the laser beam, they can print any 2D or 3D patterns desired—layer by layer.

The process does not harm cells or affect stem cells' differentiation behavior or potential; in fact, stem cells printed in patterns differentiate within the patterns toward different tissue types (see Fig. 2).1,2 As well, the team observed directed migration of adipose-derived stem cells toward endothelial cells and their interactions in establishing blood vessels.3

To form 3D skin tissue constructs, the team printed fibroblast and keratinocyte cells layer by layer. They have proven skin tissue formation by visualizing intercellular junctions and verifying their functionality,4 and they have observed basal lamina formation. Implanted in mice, the printed skin constructs show an ingrowth of blood vessels and differentiation of the epidermal keratinocytes.5

Next, the team will print bacteria and microorganisms.

REFERENCES

1. L. Koch et al., Tissue Eng. Part C Methods, 16, 5, 847–854 (2010); http://dx.doi.org/10.1089/ten.tec.2009.0397.

2. M. Gruene et al., Biofabrication, 3, 015005 (2011); http://dx.doi.org/10.1088/1758-5082/3/1/015005.

3. M. Gruene et al., Tissue Eng. Part C Methods, 17, 973–982 (2011); http://dx.doi.org/10.1089/ten.tec.2011.0185.

4. L. Koch et al., Biotechnol. Bioeng., 109, 7, 1855–1863 (2012); http://dx.doi.org/10.1002/bit.24455.

5. S. Michael et al., PLoS One, 8, 3, e57741 (2013); http://dx.doi.org/10.1371/journal.pone.0057741.

About the Author

Barbara Gefvert | Editor-in-Chief, BioOptics World (2008-2020)

Barbara G. Gefvert has been a science and technology editor and writer since 1987, and served as editor in chief on multiple publications, including Sensors magazine for nearly a decade.

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Steering Light: What is the Difference Between 2-Axis Galvo Scanners and Single Mirror 2-Axis Scanners

Dec. 18, 2024
Advantages and limitations of different 2-axis light steering methods: Piezo steering mirrors, voice-coil mirrors, galvos, gimbal mounts, and kinematic mounts.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!