SHG light from graphene shows whether it's single- or multilayer

Feb. 1, 2010
Light can serve as a probe of material structure, sometimes as a result of nonlinear effects.

Light can serve as a probe of material structure, sometimes as a result of nonlinear effects. Scientists at the University of Toronto (Toronto, ON, Canada) are using optical second-harmonic generation (SHG) by graphene to determine whether the graphene is single- or multilayered. The technique is useful to physicists, material scientists, and nanotechnologists, and also can potentially study other effects on graphene such as effects of external electric fields and of adsorbates.

A titanium:sapphire laser provided 1.0 nJ, 150 fs pump pulses at an 800 nm wavelength; the pulses were attenuated to 0.06 nJ so as not to damage the graphene. Layers of graphene were mounted on a 300 nm film of silicon dioxide on a silicon substrate, which was in turn mounted on rotation and translation stages. The p-polarized light was focused on the graphene at a 60° angle, producing a 7 × 10 µm spot. P-polarized 400 nm SHG light was optically filtered and detected by a photon-counting photomultiplier tube. When the signal as a function of azimuth angle showed a four-lobed pattern characteristic of the substrate, the researchers knew the graphene was single layer; if the pattern was three-lobed (characteristic of graphene), then more than one layer was present. Contact Jesse Dean at [email protected].

More Laser Focus World Current Issue Articles
More Laser Focus World Archives Issue Articles

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!