Nano-optical antenna is based on radio-frequency design principles

May 1, 2010
A nano-optical antenna created by researchers at Hiroshima University takes the structure of a common form of radio-frequency antenna invented almost a century ago, shrinks it by a factor of more than million, and results in a planar device about the size of a wavelength of light that emits light in a directional beam.

A nano-optical antenna created by researchers at Hiroshima University (Higashihiroshima, Japan) takes the structure of a common form of radio-frequency antenna invented almost a century ago, shrinks it by a factor of more than million, and results in a planar device about the size of a wavelength of light that emits light in a directional beam—a desirable characteristic for planar lightwave optics. The Yagi-Uda radio antenna, sometimes still seen on rooftops in the form of TV antennas, was invented in Japan in 1926; it contains a signal feed, a reflector, and a few directors. The nano-optical version is made of 50 nm thick gold nanorods on glass.

The device's feed element was driven by light from a 662-nm-emitting laser diode and the emitted signal strength as a function of angle was measured. The signal output was very directional, mostly falling within a range of 0° to 20° (the same device without the nano-optical directors emitted in a dipole-like range from about 20° to 160°). So radio-frequency antenna design can be successfully applied to nano-optics—with the one caveat that the response of metal in the optical regime is given by its complex dielectric constant (making design calculations a bit more complicated). Contact Yutaka Kadoya at [email protected].

Sponsored Recommendations

Optical Filter Orientation Guide

Sept. 5, 2024
Ensure optimal performance of your optical filters with our Orientation Guide. Learn the correct placement and handling techniques to maximize light transmission and filter efficiency...

Advanced Spectral Accuracy: Excitation Filters

Sept. 5, 2024
Enhance your fluorescence experiments with our Excitation Filters. These filters offer superior transmission and spectral accuracy, making them ideal for exciting specific fluorophores...

Raman Filter Sets for Accurate Spectral Data

Sept. 5, 2024
Enhance your Raman spectroscopy with our specialized Raman Filter Sets. Designed for high precision, these filters enable clear separation of Raman signals from laser excitation...

Precision-Engineered Longpass Filters

Sept. 5, 2024
Discover our precision-engineered Longpass Filters, designed for high transmission and optimal wavelength separation. Perfect for fluorescence imaging, microscopy, and more.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!