Nano-optical antenna is based on radio-frequency design principles

May 1, 2010
A nano-optical antenna created by researchers at Hiroshima University takes the structure of a common form of radio-frequency antenna invented almost a century ago, shrinks it by a factor of more than million, and results in a planar device about the size of a wavelength of light that emits light in a directional beam.

A nano-optical antenna created by researchers at Hiroshima University (Higashihiroshima, Japan) takes the structure of a common form of radio-frequency antenna invented almost a century ago, shrinks it by a factor of more than million, and results in a planar device about the size of a wavelength of light that emits light in a directional beam—a desirable characteristic for planar lightwave optics. The Yagi-Uda radio antenna, sometimes still seen on rooftops in the form of TV antennas, was invented in Japan in 1926; it contains a signal feed, a reflector, and a few directors. The nano-optical version is made of 50 nm thick gold nanorods on glass.

The device's feed element was driven by light from a 662-nm-emitting laser diode and the emitted signal strength as a function of angle was measured. The signal output was very directional, mostly falling within a range of 0° to 20° (the same device without the nano-optical directors emitted in a dipole-like range from about 20° to 160°). So radio-frequency antenna design can be successfully applied to nano-optics—with the one caveat that the response of metal in the optical regime is given by its complex dielectric constant (making design calculations a bit more complicated). Contact Yutaka Kadoya at [email protected].

Sponsored Recommendations

March 31, 2025
Enhance your remote sensing capabilities with Chroma's precision-engineered optical filters, designed for applications such as environmental monitoring, geospatial mapping, and...
March 31, 2025
Designed for compatibility with a wide range of systems, Chroma's UV filters are engineered to feature high transmission, superior out-of-band blocking, steep edge transitions...
March 31, 2025
Discover strategies to balance component performance and system design, reducing development time and costs while maximizing efficiency.
March 31, 2025
Explore the essential role of optical filters in enhancing Raman spectroscopy measurements including the various filter types and their applications in improving signal-to-noise...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!