Optofluidic system for laser tweezers has no pesky cover slip

Aug. 1, 2010
A new version of a type of optofluidic system designed to be used with laser "tweezers" for 3D manipulation of biological cells under a microscope has been created by researchers at Technische Universitvät Ilmenau (Ilmenau, Germany).

A new version of a type of optofluidic system designed to be used with laser "tweezers" for 3D manipulation of biological cells under a microscope has been created by researchers at Technische Universitvät Ilmenau (Ilmenau, Germany). While the old version requires a 0.17 mm thick glass cover slip between the optofluidic system and the microscope, the new version does not. The new geometry has an important advantage: direct access to the optofluidic system, which allows other analytical tools such as electrodes to be added at any time.

Pre-existing systems of this sort consist of a replicated polydimethylsiloxane (PDMS) fluid-channel system mounted to a standard cover slip; the slip is necessary, as the PDMS channel surfaces, which are created with a silicon or photoresist mold, are not of optical quality. In contrast, the new version is replicated using a polymethylmethacrylate (PMMA) master mold of optical quality, allowing the cover (through which the specimen cells are viewed) to be part of the PDMS channel structure. The PMMA mold is created through micromilling, a precision process that uses a diamond tool with a diameter of 1 mm that rotates at a speed of 55,000 rpm. Optical trapping and viewing of 3 µm polystyrene particles was successfully performed. Contact Stefan Sinzinger at[email protected].

More Laser Focus World Current Issue Articles
More Laser Focus World Archives Issue Articles

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!