ELECTRON MICROSCOPY: Lloyd’s-mirror technique extracts contour information from microscopic 2-D images

Sept. 1, 2007
As nanotechnology continues to grow, researchers struggle to monitor the details unfolding at scales far below the threshold of human vision, such as thin-film growth and droplet coalescence.
(Courtesy of Monash University)
The three-dimensional shape of a microscopic object, such as this gallium droplet, can be constructed from fringes obtained using photoemission-electron microscopy and a 19th-century Lloyd’s-mirror technique.
The three-dimensional shape of a microscopic object, such as this gallium droplet, can be constructed from fringes obtained using photoemission-electron microscopy and a 19th-century Lloyd’s-mirror technique.

As nanotechnology continues to grow, researchers struggle to monitor the details unfolding at scales far below the threshold of human vision, such as thin-film growth and droplet coalescence. Scientists using an old-time technique have found a way to retrieve real-time three-dimensional information from two-dimensional surface-electron-microscope images.

While investigating liquid gallium droplets spreading on the surface of a gallium arsenide substrate, David Jesson and colleagues at Monash University (Victoria, Australia) noticed that the edge of the droplets displayed so-called Lloyd’s fringes, an effect understood since 1834 (see figure). Lloyd’s fringes form when light reflected from a mirror (referred to as a Lloyd’s mirror) interferes with light coming from the source.

In the modern version of the effect, the scientists combine photoemission electron microscopy with the classic Lloyd’s-mirror optical geometry to determine the contour information of the coalescing gallium droplets. In this technique, UV light illuminates the droplets on the reflective substrate and forms Lloyd’s fringes near their edges, which are imaged using a photoemission-surface-electron microscope. The cathode immersion lens (part of the electron-microscope optics) may cause distortion of the fringes due to the influence of the surface topography on the uniform electric field, but the distortion is correctable with image processing. The fringe intensity varies with the height of the droplet, so the shape of the droplet surface can be reconstructed by simply counting the fringes, similar to counting the contour lines on a topographic map.

The resolution of the method is fine enough to allow detection of fringes spaced approximately 0.5 mm apart using a UV light source. Further development of Lloyd’s-mirror electron microscopy would enable resolution of features measuring hundreds of nanometers. Use of a synchrotron light source could achieve even higher resolution.

The team used the technique to investigate contact-line dynamics during reactive wetting of metal droplets, but the results of that study are secondary to the importance of the technique itself. The researchers believe the intensity and contrast of the fringes are strong enough to enable observations of real-time changes in surface topography.1 The technique could then be applied to create three-dimensional movies of nanoscale motion, such as magnetic changes in nanostructures being developed for use in computer memory, and growth of thin films and photonic crystals.

REFERENCES

1. D.E. Jesson et al., Physical Rev. Lett. 99, 016103 (July 6, 2007).

About the Author

Valerie Coffey-Rosich | Contributing Editor

Valerie Coffey-Rosich is a freelance science and technology writer and editor and a contributing editor for Laser Focus World; she previously served as an Associate Technical Editor (2000-2003) and a Senior Technical Editor (2007-2008) for Laser Focus World.

Valerie holds a BS in physics from the University of Nevada, Reno, and an MA in astronomy from Boston University. She specializes in editing and writing about optics, photonics, astronomy, and physics in academic, reference, and business-to-business publications. In addition to Laser Focus World, her work has appeared online and in print for clients such as the American Institute of Physics, American Heritage Dictionary, BioPhotonics, Encyclopedia Britannica, EuroPhotonics, the Optical Society of America, Photonics Focus, Photonics Spectra, Sky & Telescope, and many others. She is based in Palm Springs, California. 

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!