New quantum-dot recipe may yield more-efficient solar cells

June 1, 2007
Cadmium selenide (CdSe) quantum dots with a four-legged, or tetrapod, structure are particularly effective at converting sunlight into electrical energy, according to previously reported research, but chemical recipes for producing CdSe tetrapods are only 40% efficient at best.

Cadmium selenide (CdSe) quantum dots with a four-legged, or tetrapod, structure are particularly effective at converting sunlight into electrical energy, according to previously reported research, but chemical recipes for producing CdSe tetrapods are only 40% efficient at best. Last month, researchers at the Rice University (Houston, TX) Center for Biological and Environmental Nanotechnology described a 90% efficient recipe that also appears to offer “greener” chemistry and scalability for fabrication of tetrapod-based photovoltaic and electronic devices.

Upon incorporating quartenary ammonium salt (QUAT) compounds such as cetyl-trimethyl-ammonium bromide or didodecyl-dimethyl-ammonium bromide into the hot-injection-synthesis process, the research team observed 90% and 92% efficiencies, respectively, in tetrapod production. The use of QUATS also eliminates a selective precipitation purification step, as well as the need for costly alkylphosphonate ligands in the fabrication process. Charge interactions between QUAT molecules and quantum-dot surfaces are thought to be responsible for the efficiency improvements, but the process is not yet thoroughly understood. “Our work knocks down a big barrier in developing quantum-dot-based photovoltaics as an alternative to the conventional, more-expensive silicon-based solar cells,” said principal investigator Michael Wong. Contact Wong at [email protected].

Sponsored Recommendations

Working with Optical Density

Feb. 26, 2025
Optical Density, or OD, is a convenient tool used to describe the transmission of light through a highly blocking optical filter.

Custom-Engineered Optical Solutions for Your Application

Feb. 26, 2025
Explore the newest and most widely used applications of Semrock optical filters.

Linear Stages & Rotary Stages for High Precision Automation & Motion Control

Feb. 13, 2025
Motorized Linear Translation Stages & Rotary Precision Positioning Stages for High Performance Automation & Motion Control | PI USA

Motion Controllers for Precision Positioning and Automation

Feb. 13, 2025
PI manufactures a range of precision motion controllers and drivers for positioning systems, including stepper motors, brushless motors, and servo motors.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!