Illumination consumes no electricity

May 1, 2007
While bright, long-duration phosphorescence has been achieved in the violet-to-green wavelength range with rare-earth-doped strontium aluminum oxides, attempts to achieve orange-to-red phosphorescence using various metal-doped oxides have produced results inferior in brightness and afterglow duration.

While bright, long-duration phosphorescence has been achieved in the violet-to-green wavelength range with rare-earth-doped strontium aluminum oxides, attempts to achieve orange-to-red phosphorescence using various metal-doped oxides have produced results inferior in brightness and afterglow duration. But researchers at Ryukoku University (Otsu, Japan) have demonstrated conversion of weak phosphorescence to efficient strong fluorescence of a different color using a different approach-downconversion of organic dyes-and have now fabricated acrylic resins that yield bright illumination across the entire visible spectral range without consuming electricity.

Click here to enlarge image

To fabricate the resins, phosphor particles and dye molecules were suspended in a photocurable acrylate matrix and solidified. Depending upon the phosphor and dye molecule concentrations, emission of color across the visible spectrum could be obtained after exposure to a white-light source. Upon removal of the light source, illumination decayed from approximately 1 nW/mm2 to around 0.01 nW/mm2 after one hour. Optical power of the red emission-obtained by mixing blue and green phosphors with red organic dye-measured 90 minutes after the excitation source was turned off was found to be seven times higher than that of conventional red phosphors. Contact Mitsunori Saito at [email protected].

Sponsored Recommendations

How to Tune Servo Systems: Force Control

Oct. 23, 2024
Tuning the servo system to meet or exceed the performance specification can be a troubling task, join our webinar to learn to optimize performance.

Laser Machining: Dynamic Error Reduction via Galvo Compensation

Oct. 23, 2024
A common misconception is that high throughput implies higher speeds, but the real factor that impacts throughput is higher accelerations. Read more here!

Boost Productivity and Process Quality in High-Performance Laser Processing

Oct. 23, 2024
Read a discussion about developments in high-dynamic laser processing that improve process throughput and part quality.

Precision Automation Technologies that Minimize Laser Cut Hypotube Manufacturing Risk

Oct. 23, 2024
In this webinar, you will discover the precision automation technologies essential for manufacturing high-quality laser-cut hypotubes. Learn key processes, techniques, and best...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!