Laser writing fabricates optical delay lines in gallium arsenide

Dec. 1, 1995
Researchers at Columbia University (New York, NY) and UCLA (Los Angeles, CA) have demonstrated design and fabrication of optical delay lines in an epitaxial GaAs/AlGaAs substrate using laser etching. The micron-scale accuracy possible with laser fabrication of such a monolithic time-delay network offers greater precision than fiber delay lines. A focused 275-nm laser beam photochemically etched parallel grooves into the GaAs layer to form the network. The lower refractive index of the etched gro

Laser writing fabricates optical delay lines in gallium arsenide

Researchers at Columbia University (New York, NY) and UCLA (Los Angeles, CA) have demonstrated design and fabrication of optical delay lines in an epitaxial GaAs/AlGaAs substrate using laser etching. The micron-scale accuracy possible with laser fabrication of such a monolithic time-delay network offers greater precision than fiber delay lines. A focused 275-nm laser beam photochemically etched parallel grooves into the GaAs layer to form the network. The lower refractive index of the etched grooves confines the 1.3-µm Nd:YAG laser light launched into the GaAs-layer waveguides. Separation of the grooves was set at 10 mm, which resulted in multimode behavior. This distance was chosen as a compromise between efficient coupling to optical fibers and low losses in the bend sections. The delay lines that were tested had the desired delays and output power uniformity within 4%.

The integrated photonic circuits produced by laser etching included smoothly curved 90° bends, asymmetric splitters of various splitting ratios, as well as linear waveguide sections. The splitter sections have the appearance of microscale railroad switches. Splitting ratios vary depending on the length of the overlap between the "mainline" and the "branch." These devices were fabricated for use in an optically steered phased-array radar system, but the researchers are looking to develop prototypes of other large-scale photonic circuits, including switching arrays and wavelength multiplexers.

Sponsored Recommendations

Working with Optical Density

Feb. 26, 2025
Optical Density, or OD, is a convenient tool used to describe the transmission of light through a highly blocking optical filter.

Custom-Engineered Optical Solutions for Your Application

Feb. 26, 2025
Explore the newest and most widely used applications of Semrock optical filters.

Linear Stages & Rotary Stages for High Precision Automation & Motion Control

Feb. 13, 2025
Motorized Linear Translation Stages & Rotary Precision Positioning Stages for High Performance Automation & Motion Control | PI USA

Motion Controllers for Precision Positioning and Automation

Feb. 13, 2025
PI manufactures a range of precision motion controllers and drivers for positioning systems, including stepper motors, brushless motors, and servo motors.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!