Micron-sized tools are driven by light

March 1, 2003
The tools contain fixed and moving parts and are fabricated using a two-photon stereolithographic process developed by the group.
Light-driven micromanipulators are fabricated from UV-curable resin by two-photon stereo lithography. Tweezers have submicron probe tips formed by point-by-point exposure (scanning electron micrograph, a). Gradient pressure from a focused laser beam moves the tweezers tips together or apart (optical micrographs, b and c). A needle has a submicron tip and a post-like 'dot' that is captured and held by a laser beam for manipulation of the needle (scanning electron micrograph, d). Optically manipulated in an aqueous solution, the needle pushes a microscopic speck of dust aside or pricks it with its tip (optical micrographs, e and f).
Light-driven micromanipulators are fabricated from UV-curable resin by two-photon stereo lithography. Tweezers have submicron probe tips formed by point-by-point exposure (scanning electron micrograph, a). Gradient pressure from a focused laser beam moves the tweezers tips together or apart (optical micrographs, b and c). A needle has a submicron tip and a post-like "dot" that is captured and held by a laser beam for manipulation of the needle (scanning electron micrograph, d). Optically manipulated in an aqueous solution, the needle pushes a microscopic speck of dust aside or pricks it with its tip (optical micrographs, e and f).

The tools contain fixed and moving parts and are fabricated using a two-photon stereolithographic process developed by the group. A focused spot produced by a pulsed 763-nm-emitting Ti:sapphire laser is scanned through UV-curable resin; as the structure forms, the movable portions are held in place only by the viscosity of the resin. The scanning pattern of the beam is optimized to compensate for distortion resulting from shrinkage of the resin. A rinse with glycol ether ester removes all uncured resin from the completed tool.

A set of tweezers was formed in six minutes, with the tools' fine points fabricated by point-by-point exposure (see figure). The same laser and optical system used to fabricate the tweezers was used to manipulate them, but the laser was operated in a continuous-wave rather than pulsed mode. One tweezers arm was fixed, while the focused beam moved the other arm. The gap was controlled very precisely—in contrast to electrostatically controlled microtweezers, which clamp shut suddenly as a certain actuating voltage is reached.

A slotted needle captured on a post was also constructed. A "dot" formed into one end of the needle is captured by the manipulating laser beam. The needle can be optically translated, rotated, or both. Using 200 mW of laser power, the needle was translated by up to 6.8 µm or spun to a rotational speed of 34 rpm. Speeds are proportional to laser power and are limited by viscous drag. A microscopic dust particle was manipulated by the needle; a prick by the needle did not deform the needle's tip.

The tools have biological uses, says Shoji Maruo, one of the Nagoya researchers. "These light-driven nanomanipulators will be widely applied to cell biology, single-molecule analysis, and other nanobiotechnology," he notes. "Our first application is manipulation and analysis of single molecules such as DNA and protein. The second is mechanical stimulation of a living cell. In the near future, these light-driven nanomachines will be integrated into microfluidic systems, so that automatic analysis of single molecules and cells may be possible."

REFERENCE

  1. S. Maruo et al., Appl. Phys. Lett. (Jan. 6, 2003).

Correction

We incorrectly credited the photo that appeared in Japanwatch, January 2003, p. 54. The Fig. 2 photo of an oscilloscope testing a 160-Gbit/s photonic network should have been credited to Ando Electric (Tokyo), not Sony Techtronics (which, in any case, should have been spelled Sony Tektronix). Laser Focus World regrets the error.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Precision Motion Control for Photonics: 5 Keys to Success

Aug. 30, 2024
Precision motion control is a key element in the development and production of silicon-photonic devices. Yet, when nanometers matter, it can be challenging to evaluate and implement...

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

Aug. 30, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Motion Control Technologies for Medical Device Joining Applications

Aug. 30, 2024
Automated laser welding is beneficial in medical device manufacturing due to its precision, cleanliness, and efficiency. When properly optimized, it allows OEMs to achieve extremely...

How to Maximize Machine Building Performance with High-Performance Laser Processing

Aug. 30, 2024
Learn how an automotive high-speed laser blanking machine manufacturer builds machines that maximize throughput for faster processing speeds and improved productivity.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!