Free-space optical communications system transmits 10.7 Gbit/s

Nov. 1, 2008
Scientists at Discovery Semiconductors (Ewing, NJ), Science Applications International (Albuquerque, NM), the Air Force Research Laboratory (Kirtland AFB, NM), and Schafer (Albuquerque, NM) have created a satellite free-space optical communications system that transmits 10.7 Gbit/s at 1.55 µm wavelength

Scientists at Discovery Semiconductors (Ewing, NJ), Science Applications International (Albuquerque, NM), the Air Force Research Laboratory (Kirtland AFB, NM), and Schafer (Albuquerque, NM) have created a satellite free-space optical communications system that transmits 10.7 Gbit/s at a 1.55 µm wavelength; with a commercial +37 dBm optical-booster amplifier, it would do so over a distance of several tens of thousands of kilometers. The receiver—the key development—is preamplified and has an optical-delay interferometer and a balanced photoreceiver.

The transmitter-receiver pair is based on return-to-zero differential phase-shift keying. The receiver has a sensitivity of 27 photons per bit at 10.7 GHz, less than 1 dB from the quantum limit of 22 photons/bit, resulting in a bit-error rate of 1 × 10-9. The photodetector is integrated with a clock-and-data recovery (CDR) unit to allow bit-error-rate measurements. To simulate Earth-to-satellite links, the system was tested with a “turbulence box,” containing heating elements and fans, which showed that even under heavy scintillation, the CDR locked onto the data stream, and also confirmed that the return-to-zero format was more robust than a non-return-to-zero format. Contact Christoph Wree at [email protected].

Sponsored Recommendations

How to Tune Servo Systems: Force Control

Oct. 23, 2024
Tuning the servo system to meet or exceed the performance specification can be a troubling task, join our webinar to learn to optimize performance.

Laser Machining: Dynamic Error Reduction via Galvo Compensation

Oct. 23, 2024
A common misconception is that high throughput implies higher speeds, but the real factor that impacts throughput is higher accelerations. Read more here!

Boost Productivity and Process Quality in High-Performance Laser Processing

Oct. 23, 2024
Read a discussion about developments in high-dynamic laser processing that improve process throughput and part quality.

Precision Automation Technologies that Minimize Laser Cut Hypotube Manufacturing Risk

Oct. 23, 2024
In this webinar, you will discover the precision automation technologies essential for manufacturing high-quality laser-cut hypotubes. Learn key processes, techniques, and best...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!