UCSB researchers develop hybrid silicon evanescent laser

Nov. 16, 2005
November 16, 2005, Santa Barbara, CA--Researchers at the University of California, Santa Barbara have developed a novel laser by bonding optical gain layers directly to a silicon laser cavity. The hybrid laser offers an alternative to silicon Raman lasers and is an order of magnitude shorter. The laser is optically pumped, operates in continuous wave mode, and only needs 30 mW of input pump power.

November 16, 2005, Santa Barbara, CA--Researchers at the University of California, Santa Barbara have developed a novel laser by bonding optical gain layers directly to a silicon laser cavity. The hybrid laser offers an alternative to silicon Raman lasers and is an order of magnitude shorter. The laser is optically pumped, operates in continuous wave mode, and only needs 30 mW of input pump power.

The evanescent silicon laser demonstration is the first step toward an electrically pumped hybrid silicon laser. Increasingly, the performance of microelectronic systems will depend more on the connections between chips and devices than on the characteristics of the chips and devices themselves. As semiconductor systems get smaller, interconnect capacity and power dissipation will limit their performance. Optical interconnects could alleviate these limitations but the challenge has been to create a semiconductor laser that can be fully integrated with silicon microelectronics.

The laser developed by John Bowers and his students, Alex Fang and Hyundai Park, uses InAlGaAs quantum wells to provide optical amplification. "The ability to combine the best of both worlds (i.e. III-V gain material with silicon photonics) could lead to a new way of enabling highly integrated laser sources with intelligent opto-electronic devices for future optical communications at low cost," said John Bowers, professor of electrical and computer engineering at UCSB.

The research was published in Optics Express yesterday. The work was funded by DARPA and Intel Corporation.

Sponsored Recommendations

Working with Optical Density

Feb. 26, 2025
Optical Density, or OD, is a convenient tool used to describe the transmission of light through a highly blocking optical filter.

Custom-Engineered Optical Solutions for Your Application

Feb. 26, 2025
Explore the newest and most widely used applications of Semrock optical filters.

Linear Stages & Rotary Stages for High Precision Automation & Motion Control

Feb. 13, 2025
Motorized Linear Translation Stages & Rotary Precision Positioning Stages for High Performance Automation & Motion Control | PI USA

Motion Controllers for Precision Positioning and Automation

Feb. 13, 2025
PI manufactures a range of precision motion controllers and drivers for positioning systems, including stepper motors, brushless motors, and servo motors.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!