UCSB researchers develop hybrid silicon evanescent laser

Nov. 16, 2005
November 16, 2005, Santa Barbara, CA--Researchers at the University of California, Santa Barbara have developed a novel laser by bonding optical gain layers directly to a silicon laser cavity. The hybrid laser offers an alternative to silicon Raman lasers and is an order of magnitude shorter. The laser is optically pumped, operates in continuous wave mode, and only needs 30 mW of input pump power.

November 16, 2005, Santa Barbara, CA--Researchers at the University of California, Santa Barbara have developed a novel laser by bonding optical gain layers directly to a silicon laser cavity. The hybrid laser offers an alternative to silicon Raman lasers and is an order of magnitude shorter. The laser is optically pumped, operates in continuous wave mode, and only needs 30 mW of input pump power.

The evanescent silicon laser demonstration is the first step toward an electrically pumped hybrid silicon laser. Increasingly, the performance of microelectronic systems will depend more on the connections between chips and devices than on the characteristics of the chips and devices themselves. As semiconductor systems get smaller, interconnect capacity and power dissipation will limit their performance. Optical interconnects could alleviate these limitations but the challenge has been to create a semiconductor laser that can be fully integrated with silicon microelectronics.

The laser developed by John Bowers and his students, Alex Fang and Hyundai Park, uses InAlGaAs quantum wells to provide optical amplification. "The ability to combine the best of both worlds (i.e. III-V gain material with silicon photonics) could lead to a new way of enabling highly integrated laser sources with intelligent opto-electronic devices for future optical communications at low cost," said John Bowers, professor of electrical and computer engineering at UCSB.

The research was published in Optics Express yesterday. The work was funded by DARPA and Intel Corporation.

Sponsored Recommendations

Precision Motion Control for Photonics: 5 Keys to Success

Aug. 30, 2024
Precision motion control is a key element in the development and production of silicon-photonic devices. Yet, when nanometers matter, it can be challenging to evaluate and implement...

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

Aug. 30, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Motion Control Technologies for Medical Device Joining Applications

Aug. 30, 2024
Automated laser welding is beneficial in medical device manufacturing due to its precision, cleanliness, and efficiency. When properly optimized, it allows OEMs to achieve extremely...

How to Maximize Machine Building Performance with High-Performance Laser Processing

Aug. 30, 2024
Learn how an automotive high-speed laser blanking machine manufacturer builds machines that maximize throughput for faster processing speeds and improved productivity.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!