All-optical switch is based on photochromic-doped waveguides

Dec. 4, 2000
All-optical switch is based on photochromic-doped waveguides Researchers at Kwangju Institute of Science and Technology (Kwangju, Korea) have developed an all-optical switch comprised of a photochromic-dye-doped Y-branch waveguide and a thick light-blocking metal film.

All-optical switch is based on photochromic-doped waveguides

Researchers at Kwangju Institute of Science and Technology (Kwangju, Korea) have developed an all-optical switch comprised of a photochromic-dye-doped Y-branch waveguide and a thick light-blocking metal film. After fabricating the waveguide using spin-coating and oxide-reactive-ion etching, the scientists deposited a 200-nm-thick gold layer on its Y-branch and patterned the gold using photolithography and a wet chemical etching process. A section of coating on one arm of the Y-branch was then removed to allow light exposure. The optical switching occurs because the photochromic dye undergoes a structural change when exposed to both ultraviolet (356 nm) and visible (514 nm) light, which in turn produces a reversible change in the refractive index of the dye-doped polymer film. One benefit of the all-optical switch is its low crosstalk of about -14 dB at 1.55 µm. The response time also decreases exponentially as the intensity of visible light is increased, which, the scientists say indicates that a fast switching time is possible when the device is exposed to high-intensity light. Contact Jang-Joo Kim at [email protected].

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Steering Light: What is the Difference Between 2-Axis Galvo Scanners and Single Mirror 2-Axis Scanners

Dec. 18, 2024
Advantages and limitations of different 2-axis light steering methods: Piezo steering mirrors, voice-coil mirrors, galvos, gimbal mounts, and kinematic mounts.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!