Adaptive wavefront correction uses all-optical feedback

July 31, 2000
Researchers at the Mechanical Engineering Laboratory (Tsukuba, Japan), the University of Auckland (Auckland, New Zealand), and Industrial Research Limited (Lower Hutt, New Zealand) have built an adaptive wavefront-correction system based on an all-optical feedback interferometer.

Researchers at the Mechanical Engineering Laboratory (Tsukuba, Japan), the University of Auckland (Auckland, New Zealand), and Industrial Research Limited (Lower Hutt, New Zealand) have built an adaptive wavefront-correction system based on an all-optical feedback interferometer. The two-dimensional output fringe pattern from a Mach-Zehnder interferometer with large radial shear is optically fed back to an optically addressed nonpixelized phase-only liquid-crystal spatial light modulator (SLM)--an interferometric setup that does not require a separate aberration-free reference wave.

For testing purposes, the researchers sent a plane wavefront from a 19.5-mW HeNe laser through a plate with several waves of aberration to produce a distorted input wavefront. To increase feedback-loop gain to the point where the system worked, the researchers adjusted the SLM for a response time of 60 ms and a resolution of 60 line pairs/mm. Without feedback, the wavefront was highly distorted--a focused spot exhibited a Strehl ratio of 0.22. When the loop was closed, the Strehl ratio reached 0.92. Contact Tomohiro Shirai at [email protected].

Sponsored Recommendations

Working with Optical Density

Feb. 26, 2025
Optical Density, or OD, is a convenient tool used to describe the transmission of light through a highly blocking optical filter.

Custom-Engineered Optical Solutions for Your Application

Feb. 26, 2025
Explore the newest and most widely used applications of Semrock optical filters.

Linear Stages & Rotary Stages for High Precision Automation & Motion Control

Feb. 13, 2025
Motorized Linear Translation Stages & Rotary Precision Positioning Stages for High Performance Automation & Motion Control | PI USA

Motion Controllers for Precision Positioning and Automation

Feb. 13, 2025
PI manufactures a range of precision motion controllers and drivers for positioning systems, including stepper motors, brushless motors, and servo motors.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!