Electrical signals dictate optical properties of metamaterial

March 19, 2013
Southampton, England--Researchers at the University of Southampton's Optoelectronics Research Centre (ORC) have created a metamaterial with optical properties that can be controlled by electric signals.

Southampton, England--Researchers at the University of Southampton's Optoelectronics Research Centre (ORC) have created a metamaterial with optical properties that can be controlled by electric signals.1

The metamaterial contains nanoscale parts, called plasmonic metamolecules, that are supported by nanosized strings of silicon nitride. Applying an electric field of a few volts allows the strings to be driven in sync at megahertz frequencies; the result is a reconfiguration of the metamolecules, which changes the transmission and reflection spectra of the metamaterial.

"We have found a fast and reliable way of coordinating the motion of thousands of metamaterial building blocks," says Eric Plum, Research Lecturer at the ORC. "We shift them by distances smaller than the diameter of a human hair. These minute rearrangements are sufficient to radically change the transmission and reflection characteristics of the metamaterial. We do this by engaging the same force that sticks a small piece of paper to a comb after brushing. In essence, we dictate the movement of metamaterial building blocks with electrical signals, and we can do this very fast."

Metamaterials research has grown rapidly in the past decade. The University's Centre for Photonic Metamaterials is supported by the Engineering and Physical Sciences Research Council and is at the forefront of this development.

REFERENCE:

1. J. Y. Ou et al., Nature Nanotechnology (2013) http://dx.doi.org/10.1038/NNANO.2013.25

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Advancing Neuroscience Using High-Precision 3D Printing

March 7, 2025
Learn how Cold Spring Harbor Laboratory Used High-Precision 3D Printing to Advance Neuroscience Research using 3D Printed Optical Drives.

From Prototyping to Production: How High-Precision 3D Printing is Reinventing Electronics Manufacturing

March 7, 2025
Learn how micro 3D printing is enabling miniaturization. As products get smaller the challenge to manufacture small parts increases.

Sputtered Thin-film Coatings

Feb. 27, 2025
Optical thin-film coatings can be deposited by a variety of methods. Learn about 2 traditional methods and a deposition process called sputtering.

What are Notch Filters?

Feb. 27, 2025
Notch filters are ideal for applications that require nearly complete rejection of a laser line while passing as much non-laser light as possible.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!