Superfluorescent bursts from quantum wells shift wavelength over 100 ps time

Nov. 26, 2013
Houston, TX--Researchers at Rice University, Florida State University (Tallahassee, FL), and Texas A&M University (College Station, TX) are studying spontaneous bursts of coherent superfluorescent radiation from nonequilibrium quantized electron-hole pairs in semiconductor quantum wells.

Houston, TX--Researchers at Rice University, Florida State University (Tallahassee, FL), and Texas A&M University (College Station, TX) are studying spontaneous bursts of coherent superfluorescent radiation from nonequilibrium quantized electron-hole pairs in semiconductor quantum wells.1 Ordinarily, spontaneous light emission from semiconductors happens at the band edge, but the new phenomenon involves emission occurring at the quasi-Fermi edge of the carrier distribution, but then moving toward the band edge; the result is a burst of light that red-shifts during the burst. The macroscopic polarization is enhanced beyond what is possible in ordinary superfluorescence.

The quantum well consists of layers of indium gallium arsenide compound separated by barriers of gallium arsenide. The Rice University lab of Junichiro Kono created the flashes, which last on the order of picoseconds, by pumping the quantum well with 150 fs pulses; the flashes occurred 100 ps later. The researchers say the phenomenon can be understood as a combination of two previously known many-body concepts: superfluorescence, as seen in atomic and molecular systems, and Fermi-edge singularities, a process known to occur in metals. The researchers previously reported the first observation of superfluorescence in a solid-state system by strongly exciting semiconductor quantum wells in high magnetic fields. The new processFermi-edge superfluorescencedoes not require the use of powerful magnets. This opens up the possibility of creating compact semiconductor devices to produce picosecond pulses of light.

The National Science Foundation and the state of Florida supported the research.

REFERENCE:

1. Ji-Hee Kim et al., Scientific Reports (2013); doi: 10.1038/srep03283

Source: http://news.rice.edu/2013/11/25/flashes-of-brilliance/

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Achromatic Lenses: High-Quality Custom Optics

March 13, 2025
Ensure clarity and accuracy in your optics systems with Lacroix’s achromatic lenses. Explore how our custom solutions minimize chromatic aberration for perfect results.

Manufacturing Considerations for Tolerancing Aspheres

March 13, 2025
Understand the critical factors in manufacturing aspheres and how Lacroix Optics ensures precise tolerancing in every optical component.

Explore Our Videos: Insights into Precision Optics

March 13, 2025
Get an inside look at Lacroix Optics with our collection of informative videos showcasing our capabilities, innovations, and processes.

Optical Assemblies: Reliable and Precise Solutions

March 13, 2025
Ensure your optical system works seamlessly with Lacroix Optics' custom optical assemblies. Discover the precision and reliability we bring to every project.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!