Infrared vision analyzes individual layers of graphene in a stack

Nov. 25, 2013
Buffalo, NY--A University at Buffalo-led research team has developed a technique for seeing through a stack of graphene sheets to identify and describe the properties of each individual sheet.

Buffalo, NY--A State University of New York (SUNY) University at Buffalo (UB)-led research team has developed a technique for "seeing through" a stack of graphene sheets to identify and describe the properties of each individual sheeteven when the sheets are covering each other up. The method involves shooting a beam of infrared (IR) light at the stack, and measuring how the light wave's direction of oscillation changes as it bounces off the layers within. The collaborators included colleagues from UB and the U.S. Naval Research Laboratory.

When a magnetic field is applied and increased, different types of graphene alter the direction of oscillation, or polarization, in different ways. A graphene layer stacked neatly on top of another will have a different effect on polarization than a graphene layer that is messily stacked. "By measuring the polarization of reflected light from graphene in a magnetic field and using new analysis techniques, we have developed an ultrasensitive fingerprinting tool that is capable of identifying and characterizing different graphene multilayers," said John Cerne, UB associate professor of physics, who led the project. The technique allows the researchers to examine dozens of individual layers within a stack.

Graphene, a nanomaterial that consists of a single layer of carbon atoms, has generated huge interest due to its remarkable fundamental properties and technological applications. It is lightweight but also one of the world's strongest materials. So incredible are its characteristics that it garnered a Nobel Prize in Physics in 2010 for two scientists who pioneered its study.

Cerne's new research looks at graphene's electronic properties, which change as sheets of the material are stacked on top of one another. The findings are published in Scientific Reports (http://www.nature.com/srep/2013/131105/srep03143/full/srep03143.html), an online open-access journal produced by the publishers of Nature.

The study showed that absorption and emission patterns change when a magnetic field is applied, which means that scientists can turn the polarization of light on and off either by applying a magnetic field to graphene layers or, more quickly, by applying a voltage that sends electrons flowing through the graphene. "Applying a voltage would allow for fast modulation, which opens up the possibility for new optical devices using graphene for communications, imaging and signal processing," said first author Chase T. Ellis, a former graduate research assistant at UB and current postdoctoral fellow at the Naval Research Laboratory.

SOURCE: SUNY University at Buffalo; http://www.buffalo.edu/news/releases/2013/11/029.html

About the Author

Gail Overton | Senior Editor (2004-2020)

Gail has more than 30 years of engineering, marketing, product management, and editorial experience in the photonics and optical communications industry. Before joining the staff at Laser Focus World in 2004, she held many product management and product marketing roles in the fiber-optics industry, most notably at Hughes (El Segundo, CA), GTE Labs (Waltham, MA), Corning (Corning, NY), Photon Kinetics (Beaverton, OR), and Newport Corporation (Irvine, CA). During her marketing career, Gail published articles in WDM Solutions and Sensors magazine and traveled internationally to conduct product and sales training. Gail received her BS degree in physics, with an emphasis in optics, from San Diego State University in San Diego, CA in May 1986.

Sponsored Recommendations

Working with Optical Density

Feb. 26, 2025
Optical Density, or OD, is a convenient tool used to describe the transmission of light through a highly blocking optical filter.

Custom-Engineered Optical Solutions for Your Application

Feb. 26, 2025
Explore the newest and most widely used applications of Semrock optical filters.

Linear Stages & Rotary Stages for High Precision Automation & Motion Control

Feb. 13, 2025
Motorized Linear Translation Stages & Rotary Precision Positioning Stages for High Performance Automation & Motion Control | PI USA

Motion Controllers for Precision Positioning and Automation

Feb. 13, 2025
PI manufactures a range of precision motion controllers and drivers for positioning systems, including stepper motors, brushless motors, and servo motors.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!